

Samoa School Certificate

CHEMISTRY 2017

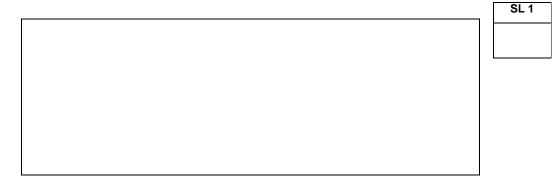
QUESTION and ANSWER BOOKLET

Time allowed: 3 hours and 10 minutes

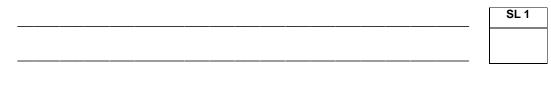
INSTRUCTIONS:

- 1. You have 10 minutes to read before you start writing.
- 2. Write your Student Education Number (SEN) in the space provided on the top left hand corner of this page.
- 3. Answer ALL QUESTIONS. Write your answers in the spaces provided in this booklet.
- **4.** If you need more space for answers, ask the Supervisor for extra paper. Write your SEN on all extra sheets used and clearly number the questions. Attach the extra sheets at the appropriate places in this booklet.

NB: Periodic Table is inserted as a separate sheet.


	STRANDS	Page	Time (min)	Weighting
STRAND 1:	ATOMIC STRUCTURE AND BONDING	2	18	10
STRAND 2:	QUANTITATIVE CHEMISTRY	3	22	12
STRAND 3:	ORGANIC CHEMISTRY	5	43	24
STRAND 4:	OXIDATION AND REDUCTION	9	18	10
STRAND 5:	INORGANIC CHEMISTRY	10	50	28
STRAND 6:	PRINCIPLES OF PHYSICAL CHEMISTRY	15	29	16
	TOTAL		180	100

Check that this booklet contains pages 2-18 in the correct order and that none of these pages is blank.


HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

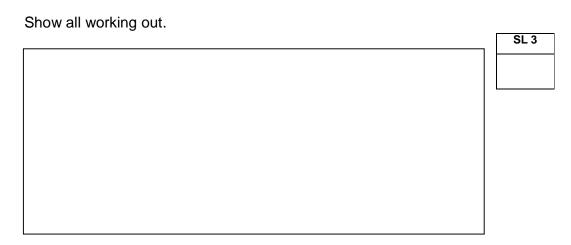
The electron arrangement of Carbon, C, is 2, 4.

1.1 Write	e the	electron	arrangeme	nt for	Aluminium.
------------------	-------	----------	-----------	--------	------------

1.2 Define isotopes.

1.3 Sketch a diagram of the carbon atom with six protons and eight neutrons. Label the nucleus and the subatomic particles.

1.4 Draw the Lewis Structure of Methane.



1.5	explain the physical properties of ionic substances in relation to it structure and bonding.	S
		SL 3
STF	RAND 2: QUANTITATIVE CHEMISTRY	Weighting 12
2.1	Define <i>mole</i> .	
		SL 1
2.2	State the Avogadro's Constant.	
		SL 1
2.3	Explain the relationship between mass and number of moles.	
2.5	Explain the relationship between mass and number of moles.	SL 3
	-	

Fe ₂ O ₃

 $M(Fe) = 55.9 \text{ gmol}^{-1}$ M(C)

 $M(O) = 16.0 \text{ gmol}^{-1}$

- **2.5** Vitamin C has a mass composition of 40.92% carbon, 4.58% hydrogen and 54.50% oxygen.
 - (i) Calculate the empirical formula of vitamin C.
 - (ii) If the molar mass of Vitamin C is 176g mol⁻¹, use your answer in (i) to determine the molecular formula of Vitamin C.

C = 12 g/mol

H = 1 g/mol

O = 16 g/mol

SL 4

STR	AND 3:	ORGANIC CHEMISTRY	Weighting 24
3.1	Define homologo	ous series.	
			SL 1
3.2	Name an unsatu	rated hydrocarbon.	
			SL 1
3.3	Identify a hydroc	arbon given its physical characteristics.	
			SL 1
3.4	Define isomerisn	า.	
			SL 1
3.5	List TWO physica	al properties of alkynes.	
	(i)		SL 2
3.6	Explain why there	e are numerous carbon compounds (catenation)	
			SL 3

3.7	Define functional groups.	
		SL 1

3.8 Name the structural formula below:

$$\begin{array}{c} CH_3-CH_2-CH-CH_3 \\ | \\ OH \end{array}$$

Name:	SL 1

3.9 Name the product formed from the reaction below.

Name:	 SL 1

3.10 Name the functional group of the structural formula below.

Functional group:_______SL1

3.11	Give ONE use of alcohol.	
		SL 1
3.12	For the reaction given below, state a relevant title to the process.	
	$CH_{_4(g)} + O_{_2(g)} \longrightarrow C_{(s)} + 2H_{_2}O_{(g)}$	
		SL 1
3.13	Draw the structural formulae of 3,4 – dimethylpentan-2-ol	SL 2
3.14	Explain the production of otheral from the hydrotion of othera	
3.14	Explain the production of ethanol from the hydration of ethene.	SL 3
		020

 	 	 	_
			_
 	 	 	-
 	 	 	_
 	 	 	_
	 		_
 	 	 	-

Weighting 10 STRAND 4: **OXIDATION AND REDUCTION REACTIONS** 4.1 Define oxidation. SL 1 4.2 Define *reducing agent*. SL 1 4.3 When zinc metal is placed in hydrochloric acid, the zinc metal dissolves and releases a gas. Write the half equation for the reduction reaction. SL 1 4.4 From the reaction in **4.3** above, the zinc metal is oxidized. Write the half equation for the **oxidation reaction**. SL 1 4.5 Write an overall balanced half equation for **4.3** and **4.4** above. SL 1

4.6	List TWO oxidizing age	ents.	
	(i)		SL 2
	,,		
4.7	Calculate the oxidation	n for:	SL 3
	(i) Oxygen in H ₂ SO ₄		
	(ii) Nitrogen in N ₂		
	(iii) Copper ion, Cu+2		
STF	RAND 5:	INORGANIC CHEMISTRY	Weighting 28
5.1	Define <i>precipitation</i> .		
			SL 1
5.2	Define efflorescence.		
			SL 1

3	Name the ionic compounds below.	
	(i) CuCO ₃	SL 2
	(ii) NH ⁴ OH	
4	Define alloy.	
		SL 1
5	Give ONE example of an alloy.	
		SL 1
	Describe TWO ways of preventing corrosion.	
	(i)	SL 2
	(ii)	

Define deliquescence.	
	SL
Discuss the importance of the ozone layer to the planet earth.	
	SL
Name ONE allotrope of carbon.	
	SI
	•
List TWO uses of carbon dioxide.	
	SL
(i)	31
(ii)	

			····		
Evalois the CC	NITACT process	for the manufact	ture of outle	urio gold	
Explain the CC	NTACT process				
Explain the CC		for the manufac			F
Explain the CC					
Explain the CC					
Explain the CC					
Explain the CC					
Explain the CC					
Explain the CC					
Explain the CC					

13	Discuss the properties of sulfuric acid and its uses in real life situations.	
		SL 4
4	Name a property of chlorine.	
		 SL 1
15	Give ONE use of hydrochloric acid.	
		 SL 1

6.1 Define *endothermic*.

6.2 Reactions are described in different ways.

Classify whether the reaction below is **exothermic** or **endothermic**.

$$CH_{4 (g)} + 2O_{2 (g)} \longrightarrow CO_{2(g)} + 2H_2O_{(l)} \triangle H = -888 \text{ kJ mol}^{-1}$$

SL 1

6.3 Hydrogen formed by the reaction of zinc with hydrochloric acid is collected by displacement of water.

The total volume of hydrogen collected is recorded every minute for five minutes.

Time (minute)	0	1	2	3	4	5
Volume of hydrogen (ml)	0	12	20	25	28	29

Draw a graph showing the total volume of hydrogen collected (*y axis*) against the time since the start of the experiment (*x axis*).

SL 2

and the TMO where it also were and	f b	
escribe TWO physical properti	es of bases.	
		ľ

								[
aper, discu	ucting a si uss any fo	imple tes ur core o	ts for ac bjectives	ids and b s to imple	ases usi ment an	ng the d cond	litmu: duct	IS
aper, discu iis test.	ucting a si uss any fo	ur core o	bjectives	s to imple	ment an	d cond	litmu: duct	s [
aper, discu nis test.	iss any fo	ur core o	bjectives	s to imple	ment an	d cond	litmu: duct	is — [
aper, discu nis test.	iss any fo	ur core o	bjectives	s to imple	ment an	d cond	litmu: duct	S
aper, discu nis test.	uss any fo	ur core o	bjectives	s to imple	ment an	d cond	duct	S
aper, discu nis test.	uss any fo	ur core o	bjectives	s to imple	ment an	d cond	duct	S
aper, discu	uss any fo	ur core o	bjectives	s to imple	ment an	d cond	duct	S
aper, discu	uss any fo	ur core o	bjectives	s to imple	ment an	d cond	duct	S
aper, discu	uss any fo	ur core o	bjectives	s to imple	ment an	d cond	duct	S
aper, discu	uss any fo	ur core o	bjectives	s to imple	ment an	d cond	duct	S
aper, discu	uss any fo	ur core o	bjectives	s to imple	ment an	d cond	duct	S
aper, discu	iss any fo	ur core o	bjectives	s to imple	ment an	d cond	duct	S
aper, discu	iss any fo	ur core o	bjectives	s to imple	ment an	d cond	duct	S
aper, discu	iss any fo	ur core o	bjectives	s to imple	ment an	d cond	duct	S
aper, discu	iss any fo	ur core o	bjectives	s to imple	ment an	d cond	duct	S
aper, discu	iss any fo	ur core o	bjectives	s to imple	ment an	d cond	duct	S
aper, discu	iss any fo	ur core o	bjectives	s to imple	ment an	d cond	duct	S
	iss any fo	ur core o	bjectives	s to imple	ment an	d cond	duct	IS

For scorers use only

STRANDS	SCORE	Weighting
STRAND 1: Atomic Structure and Bonding		10
STRAND 2: Quantitative Chemistry		12
STRAND 3: Organic Chemistry		24
STRAND 4: Oxidation and Reduction		10
STRAND 5: Inorganic Chemistry		28
STRAND 6: Principles of Physical Chemistry		16
TOTAL		100