

Samoa Secondary Leaving Certificate

CHEMISTRY 2017

QUESTION and ANSWER BOOKLET

Time allowed: 3 hours and 10 minutes

INSTRUCTIONS

- 1. You have 10 minutes to read before you start writing.
- 2. Write your **Student Education Number (SEN)** in the space provided on the top right hand corner of this page and on **all** extra papers used.
- 3. Answer ALL QUESTIONS. Write your answers in the spaces provided in this booklet.
- **4.** If you need more space for answers, ask the Supervisor for extra paper. Number your answers clearly and attach the extra sheets at the appropriate places in this booklet.

NB: A Periodic Table is inserted as a separate sheet.

	CURRICULUM STRANDS	Page	Time (min)	Weighting
STRAND 1:	ATOMIC STRUCTURE AND BONDING	2	31	17
STRAND 2:	QUANTITATIVE CHEMISTRY	5	31	17
STRAND 3:	INORGANIC CHEMISTRY	8	18	10
STRAND 4:	ORGANIC CHEMISTRY	9	39	22
STRAND 5:	PHYSICAL CHEMISTRY	13	18	10
STRAND 6:	OXIDATION AND REDUCTION	15	43	24
	TOTAL		180	100

CHECK that this booklet contains pages 2-19 in the right order.

HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION

AND 1:	ATOMIC STRUCTURE AND BONDING	Weighting 17	
Lithium h	has two naturally occurring isotopes ${}^6_3 extsf{Li}$ and ${}^7_3 extsf{Li}$		
	mbols in the form used for the lithium isotope about isotope of carbon.	ove, write the	
			SL1
Describe metal.	e a test of a physical property which could show a	solid to be a	
			SL2
	nd a good supply of a solid, explain how you would aboratory to see if it contained ions.	d test it in the	
			SL4

Choose ONE solic	l. Make a simila	ar statement re	elating an impo	ortant
physical property t				
(a) lodine	(b) Sulphur	(c) Graphite	(d) Copper	
				
.				
Predict the shape	of the carbon o	dioxide molecu	ile.	
Describe the gene	ral trend in ato	omic radii acros	ss a row of the	
Describe the gene periodic table.	ral trend in ato	mic radii acros	ss a row of the	
	ral trend in ato	omic radii acros	ss a row of the	
	ral trend in ato	omic radii acros	ss a row of the	
	ral trend in ato	omic radii acros	ss a row of the	
	ral trend in ato	omic radii acros	ss a row of the	
	ral trend in ato	omic radii acros	ss a row of the	
	ral trend in ato	mic radii acros	ss a row of the	
	ral trend in ato	mic radii acros	ss a row of the	
			ss a row of the	
periodic table.			ss a row of the	
periodic table.			ss a row of the	

8	Which is more elect	tronegative? Cart	oon or Fluorine		
					SL1
9	Define the term ion	ic bonding			
					SL1
10	Circle the element	that has the large	st ionization en	ergy:	
	Hydrogen	Potassium	Helium	Silicon	SL1

STRAND 2:

QUANTITATIVE CHEMISTRY

Weighting 17

2.1 Calculate the concentration of the solution before and after dilution when a 0.02 mol sodium chloride in 5 mL of solution is diluted to 500 mL by adding 495 mL of water.

SL3

2.2 Draw a clear diagram of a volumetric flask.

SL1

2.3 A substance **X** reacts with oxygen as shown by the equation:

$$4\boldsymbol{X}\quad +\quad O_2\!\rightarrow\,2X_2O$$

How many moles of oxygen molecules react with one mole of X?

During the preparation of a standard solution of sodium carbonate (Na ₂ CO ₃), a chemistry student obtains the following results:	
Mass of beaker = 128.45 g Mass of beaker and anhydrous sodium carbonate = 131.10 g	
She dissolved this sodium carbonate in enough water to make exactly 100 mL of standard solution. Ten minutes later, she titrated this standard solution against a solution of hydrochloric acid and found that 20 mL of the sodium carbonate solution was exactly neutralized by 5 mL of the acid.	
Discuss how she would have known when the two solutions were neutralized.	
	SL4
A student wishes to prepare 250 mL of a 0.20 molL ⁻¹ solution of oxalic acid (COOH) ₂ .2H ₂ O.	
Calculate the mass of oxalic acid the student would need to weigh.	
M ((COOH) ₂ .2H ₂ O) = 126 g/mol	
	SL2

The following laboratory manual instructions were given for an experiment involving a titration: "Pipette 20 mL of the standard solution into a titration flask. Add 2-3 drops of methyl orange indicator. Titrate from a burette until the end-point is reached." Describe the colour change of the methyl orange when reaching the end-point.	S
experiment involving a titration: "Pipette 20 mL of the standard solution into a titration flask. Add 2-3 drops of methyl orange indicator. Titrate from a burette until the end-point is reached." Describe the colour change of the methyl orange when	
experiment involving a titration: "Pipette 20 mL of the standard solution into a titration flask. Add 2-3 drops of methyl orange indicator. Titrate from a burette until the end-point is reached." Describe the colour change of the methyl orange when	
drops of methyl orange indicator. Titrate from a burette until the end-point is reached." Describe the colour change of the methyl orange when	
	S
	. S
	-
A 7.02 mg sample of a hydrocarbon X gave 21.99 mg of carbon dioxide and 8.95 mg of water on combustion.	
Calculate the percentage composition of the elements in the hydrocarbon.	
	S
Define the term aliquot.	
	S

INORGANIC CHEMISTRY

Weighting 10

3.1 Fill in the missing information:

OXIDE	State at 20°C	BONDING
SiO ₂	solid	

SL1	

3.2 Some silver nitrate is added to a solution containing chloride ions. Later dilute ammonia is added to the reaction mixture.

Discuss any observations and state ONE product from the reaction.

SL4

3.3 List **TWO** factors that influence the solubility of salts.

3.4 Write the balanced equation for the reaction of $\mathbf{MgCl}_{2(s)}$ with water

Consider the following steps in the oxidation of alcohols A and B:

Alcohol (A)
$$\xrightarrow{\text{oxidation}}$$
 $H \xrightarrow{C} H$ $\xrightarrow{\text{oxidation}}$ $H \xrightarrow{C} C \xrightarrow{H} OH$

Alcohol (B)
$$\xrightarrow{\text{oxidation}} H \subset C \subset H H H H H$$

4.1 Draw the structures of **A** & **B**.

Discuss the difference in structures which leads to the different oxidation products obtained from each.

Identify the oxidizing agents used to oxidize A and B.

	STRUCTURE A	STRUCTURE B	
			CT 4
_			 SL4
_			
_			
_		 	
_			

	SI
(ii) <i>Triglycerides</i>	
	SI
	L
A few drops of Benedict solution are heated with glucose solution in a water bath.	
Report what you would observe and identify the TWO coloured species in this reaction.	
	SI
species in this reaction.	SI

	SL
	-
	-
	-
Polythene is an addition polymer made from ethene.	
Using structural formula, write the equation for the formation of polyethene.	
	SL
	-
Describe properties of tests you could use to distinguish CH₃COOH from CH₃OH .	
	SI
from CH₃OH.	

4.8 Circle the **aldehyde** functional group.

SL1

4.9 Circle the **ester** functional group.

STRAND 5:

PHYSICAL CHEMISTRY

Weighting 10

5.1 Methanol (CH₃OH) has been suggested as an alternative for petrol. It burns according to the equation:

$$CH_3OH_{(I)}$$
 + $1\frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)}$ + $2H_2O_{(g)}$

Use the following information to find $\triangle H$, the enthalpy of reaction for methanol burning:

SL3

5.2 Write the equilibrium constant (K_c) for the reaction below:

$$2NH_{3(g)} \rightleftharpoons N_{2(g)} + 3H_{2(g)}$$

SL2

5.3 A 10 mL of 0.001 molL⁻¹ sodium hydroxide solution is diluted with pure water to a total volume of 100 mL.

Calculate the pH of the resulting solution.

5.4	When 0.1 molL -1 aqueous solutions of hydrochloric acid and ethanoic acid are tested, the ethanoic acid is found to have a lower hydrogen ion concentration than the hydrochloric acid.	
	Explain why.	
		SL2

5.4

The first type of breathalyzer, still in use today, was a disposal device consisting of a plastic tube packed with yellow crystals of Na₂Cr₂O₇ as shown in the diagram below.

6.1	Explain the	e breathalyzer	test in	terms of	oxidation	and	reduction.
-----	-------------	----------------	---------	----------	-----------	-----	------------

SL4

6.2 State the **oxidation number** of chromium in:

 $Cr_2O_7^{2-} =$

List TWO common reducing agents.	
	S
Write the overall redox equation for the oxidation of iron (II) ions to	_
iron (III) ions by the permanganate ion in acid solution. The permanganate ion reacts to form the manganese (II) ion.	
Explain reduction reactions in terms of transfer of oxygen.	
	_
	_
	_
	_

Discuss any ionic reactions that occur at the cathode and the anode when a solution of copper sulphate is electrolyses between copper electrodes.	SL4
Write the equations for the reaction at each electrode. State ONE important industrial use of this process.	
Write half-cell equations for the redox reactions between an acidified aqueous solution of potassium dichromate and an aqueous potassium iodide solution.	
For both reactions clearly indicate where oxidation and reduction have occurred.	
	SL4
	anode when a solution of copper sulphate is electrolyses between copper electrodes. Write the equations for the reaction at each electrode. State ONE important industrial use of this process. Write half-cell equations for the redox reactions between an acidified aqueous solution of potassium dichromate and an aqueous potassium iodide solution. For both reactions clearly indicate where oxidation and

6.8	Arrange the follonumber for the o	ion			
	СО	CO ₂	CH₄	СН₃ОН	
					SL3
6.9	Define the term	reduction.			
					SL1
					<u></u>

For scorers use only

CURRICULUM STRANDS	Score	Weighting
STRAND 1: ATOMIC STRUCTURE AND BONDING		17
STRAND 2: QUANTITATIVE CHEMISTRY		17
STRAND 3: INORGANIC CHEMISTRY		10
STRAND 4: ORGANIC CHEMISTRY		22
STRAND 5: PHYSICAL CHEMISTRY		10
STRAND 6: OXIDATION AND REDUCTION		24
TOTAL		100