Samoa Secondary Leaving Certificate

PHYSICS

2020

QUESTION and ANSWER BOOKLET

Time allowed: $\mathbf{3}$ Hours \& 10 minutes

INSTRUCTIONS

1. You have 10 minutes to read before you start the exam.
2. Write your Student Education Number (SEN) in the space provided on the top right hand corner of this page.
3. Answer ALL QUESTIONS. Write your answers in the spaces provided in this booklet.
4. If you need more space, ask the Supervisor for extra paper. Write your SEN on all extra sheets used and clearly number the questions. Attach the extra sheets at the appropriate places in this booklet.

NOTE: All required formulas are provided on the last page.

	CURRICULUM STRANDS	Page	Time (min)	Weighting
STRAND 1:	MEASUREMENT	2	18	10
STRAND 2:	WAVES	4	32	18
STRAND 3:	MECHANICS	7	44	24
STRAND 4:	ELECTROMAGNETISM	11	50	28
STRAND 5:	NUCLEAR PHYSICS	15	18	10
STRAND 6:	ELECTRICITY	16	18	10
	TOTAL		$\mathbf{1 8 0}$	$\mathbf{1 0 0}$

1. Express $25,234 \mathrm{~kg}$ in scientific notation.

2. An airplane has a maximum velocity of $160 \mathrm{~km} / \mathrm{h}$ in still air. Calculate its maximum velocity when it travels in air with a crosswind of $30 \mathrm{~km} / \mathrm{h}$.

\square
3. A ball is fired from a launcher with an initial velocity of $20.0 \mathrm{~m} / \mathrm{s}$ at an angle of 30.0° to the horizontal. Calculate the horizontal and vertical initial velocity components.
\square
4. The table given below shows some of the data obtained from Question 4. Complete the table and use it to sketch a velocity-time graph of the ball.

Time (s)	Velocity (m/s)
0	20
0.5	15
1	
1.5	5
2	0
2.5	
3	
3.5	
4	-20

\square
6. Define real image.

7. Name a property of a convex mirror.

8. Define partial reflection.

9. Give the definition for refractive index.

11. Define the amplitude of a wave.
\square
12. An electric generator can supply an AC power of 240 V and 10 A at a frequency of 50 Hz . Describe the concept of 50 Hz frequency in this case.
\square
13. Describe the concept of wavelength in light waves.

14. The average velocity of light in air is $300,000,000 \mathrm{~m} / \mathrm{s}$. Determine the frequency of light, if 700 nm wavelength was used in an experiment.
\square
15. Draw a diagram and use an example to discuss the wave model of light.
\square
16. Define diffraction of waves.

17. Define acceleration.

18. A ball is fired from a launcher with an initial velocity of $50.0 \mathrm{~m} / \mathrm{s}$ at an angle of 30° to the horizontal. Calculate the horizontal distance travelled.
\square
19. Explain the relationship between the weight of an object and the gravitational field.
\square
20. State the universal law of gravitation.

21. Describe the projectile motion of an object, which is under the influence of gravity. (You may use a diagram to illustrate).

22. Explain the relationship between the area under a force-displacement graph and the amount of work done.

Calculate the total work done. (Use the above force-displacement graph).
\square
27. A light spring with a spring constant of $1000 \mathrm{~N} / \mathrm{m}$ is extended 2 cm to the right. Calculate the spring potential energy stored.

28. Describe how forces produce pressure in a container which contains gas.

29. Calculate the magnitude of the magnetic force experienced on a moving electric wire conductor that carries 2A. The length of carrying wire conductor is 10 cm and it is moving across a magnetic field of 2 T .
\square
30. State the qualities that make materials good or bad conductors.

31. State the conditions that are necessary to induce a voltage in a straight conductor or a coil.

32. A proton, which has a charge of $1.6 \times 10^{-19} \mathrm{C}$, is moving at a velocity of $3,000 \mathrm{~m} / \mathrm{s}$ towards the east through a magnetic field of strength 0.05 T directed south. What is the strength and direction of the magnetic force on the proton at this instant?
\square
33. Explain why commercial transformers cannot operate on direct current (dc) supply.

34. Describe how electrons and not protons are the conveyors (carriers) of charge in an electric wire conductor. (You may use a diagram to illustrate your answer).
\square
35. List the materials and apparatus required for a magnetic field investigation.

36. The Homebase electrical information is given in the label above. Explain the power rating of this electrical appliance.

37. Calculate the electrical power produced by an electrical resistance of 10 ohms if a current of 2 A flows through it.

\square
38. Calculate the total resistance of the circuit given below.

39. Determine the potential difference across the 3 ohm resistor.

40. Calculate the heat dissipated by the 2 ohm resistor.

41. What causes the deflection of alpha particles in Rutherford's experiment?

45. Describe ways in which atomic radiation can be valuable to humans.
\square
46. Draw a diagram to illustrate and explain in details how a moving loud speaker operates.

47 Describe the production of a current through electromagnetic induction.

48 Describe applications of electrostatics.
\square
49. Explain how an electroscope is used to identify whether an object is a conductor or an insulator.

PHYSICS EQUATIONS SHEET

Kinematics

Electricity and Magnetism

$v=u+a t$

$$
\mathrm{P}=\frac{W}{t}
$$

List of constants
$\mathrm{I}=\frac{Q}{t}$

$$
k=2 \times 10^{-7} N A^{-2}
$$

$V=\Delta E / q$
$m_{e}=9 \times 10^{-31} \mathrm{~kg}$
$v^{2}=u^{2}+2 a d$
$V=I R$
$G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
$v=\frac{\Delta d}{\Delta t}$
$a=\frac{\Delta v}{\Delta t}$

$$
e=1.6 \times 10^{-19} C
$$

$d=u t+\frac{1}{2} a t^{2}$
$\mathrm{P}=\mathrm{VI}$
$k=9.0 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$
mass of the proton $=1.67 \times 10^{-27} \mathrm{~kg}$

Momentum

$$
\mathrm{B}=\frac{k I}{d}
$$

$$
h=6.6 \times 10^{-34} \mathrm{Js}
$$

$p=m v$
$\Delta p=p_{f}-p_{i}$
$F=B q v$
$m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2} \quad \mathrm{~F}=\mathrm{IBL}$
$\tau=B A N I \cos \theta$

Light and Waves

$$
\mathrm{P}=\Delta \mathrm{E} / \mathrm{t}
$$

$\frac{1}{f}=\frac{1}{d_{i}}+\frac{1}{d_{o}}$
$\mathrm{V}=\mathrm{Bvl}$
$m=\frac{H_{i}}{H_{o}}=\frac{d_{i}}{d_{o}}$
Energy and Mechanics
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
$W=F d$
$T=\frac{1}{f}$
$E=m g h$
$\mathrm{E}=\mathrm{hf}$
$v=f \lambda E_{k}=\frac{1}{2} m v^{2}$
Circular Motion
$a=\frac{v^{2}}{r}$ $F=k x$
$F=\frac{m v^{2}}{r} E_{p}=\frac{1}{2} k x^{2}$
$v=\frac{2 \pi r}{T}$

STUDENT EDUCATION NUMBER									

PHYSICS

(For Scorers only)

CURRICULUM STRANDS	Weighting	Scores	Chief Scorer	Double Entry (AED)
STRAND 1: MEASURMENT	10			
STRAND 2: WAVES	18			
STRAND 3: MECHANICS	24			
STRAND 4: ELECTROMAGNETISM	28			
STRAND 5: NUCLEAR PHYSICS	10			
STRAND 6: ELECTRICITY	10			
	TOTAL	100		

