

	STUE	DENT I	EDUC	ATION	NUN	1BER	

Samoa Secondary Leaving Certificate

CHEMISTRY 2021

QUESTION and ANSWER BOOKLET

Time allowed: 3 Hours & 10 minutes

INSTRUCTIONS

- 1. You have 10 minutes to read **before** you start the exam.
- 2. Write your Student Education Number (SEN) in the space provided on the top right hand corner of this page.
- 3. **Answer ALL QUESTIONS.** Write your answers in the spaces provided in this booklet.
- 4. If you need more space, ask the Supervisor for extra paper. Write your SEN on all extra sheets used and clearly number the questions. Attach the extra sheets at the appropriate places in this booklet.

NB: The Periodic Table is inserted as a separate sheet.

	STRANDS	Pages	Time (min)	Weighting
STRAND 1	ATOMIC STRUCTURE AND BONDING	2	31	17
STRAND 2	QUANTITATIVE CHEMISTRY	5	31	17
STRAND 3	INORGANIC CHEMISTRY	8	18	10
STRAND 4	ORGANIC CHEMISTRY	10	40	22
STRAND 5	PRINCIPLES OF PHYSICAL CHEMISTRY	14	18	10
STRAND 6	OXIDATION AND REDUCTION	16	42	24
	TOTAL	•	180	100

Check that this booklet contains pages 2-19 in the correct order and that none of these pages are blank.

HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

STRAND 1:

ATOMIC STRUCTURE AND BONDING

WEIGHTING 17

For Questions 1 to 3, choose and write the LETTER of the correct answer in the box provided.

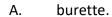
- The Octet Rule refers to the tendency of atoms to have how many electrons in the 1. valence shells?
 - A. Two
 - В. Four
 - C. Six
 - Eight D.

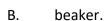
SL 1

(Use your knowledge of the Periodic Table to answer Questions 2 and Question 3.)

- 2. Which of the following group in the periodic table would have elements with the largest atoms radius?
 - A. Group 1.
 - В. Group 2.
 - C. Group 14.
 - Group 17. D.

- SL 1
- 3. Which of the following group in the periodic table would have elements with the highest possible first ionization energy?
 - A. Group 1.
 - В. Group 2.
 - C. Group 14.
 - D. Group 17.

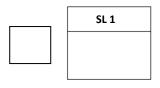

 SL 1


					S
Cualada	and all Carra lands		_		
State the sy	mbol for a hydra	ated potassium ior	n.		
					 S
Draw and r	name the shape o	of NH ₃ .			
Draw and r	name the shape o	of NH ₃ .			
Draw and r	name the shape o	of NH ₃ .			
Draw and r	name the shape o	of NH₃.			S
Draw and r	name the shape o	of NH₃.			S
Draw and r	name the shape o	of NH₃.			S
Draw and r	name the shape o	of NH ₃ .			S
Draw and r	name the shape o	of NH ₃ .			S
Draw and r	name the shape o	of NH ₃ .			S
Explain in t	erms of structure	e and bonding why			S
Explain in t	erms of structure				S
Explain in t	erms of structure	e and bonding why			S
Explain in t	erms of structure	e and bonding why			S

If you have a good supply of a solid, discuss how you would test it in your school laboratory to see if it contains ions.	
	S

For Questions 9 to 11, choose and write the LETTER of the correct answer in the box provided.

9. This glassware is called a:



C. conical flask.

D. test tube.

10. A solution containing precisely a known concentration of an element is called a:

A. weak solution.

B. standard solution.

C. non-standard solution.

D. concentrated solution.

SL 1

11. The formula for calculating the concentration of a solution is:

A. $c = \frac{d}{v}$

B. $c = \frac{n}{v}$

C. $c = \frac{v}{m}$

D. $c = \frac{v}{n}$

SL 1

Calculate the number of m	valor of water vanour	formed when 22 g of mot	thana hurns
Calculate the number of m	ioles of water vapour	offiled when 32 g of file	mane burns.
M(C) = 12 g/mol	M(H) = 1 g/mol	M(O) = 16 g/mol	
Describe the methodology	for carrying out an ac	id-base titration.	
Describe the methodology	for carrying out an ac	id-base titration.	
Describe the methodology	for carrying out an ac	id-base titration.	
Describe the methodology	for carrying out an ac	id-base titration.	
Describe the methodology	for carrying out an ac	id-base titration.	
Describe the methodology	for carrying out an ac	id-base titration.	
Describe the methodology	for carrying out an ac	id-base titration.	
Describe the methodology	for carrying out an ac	id-base titration.	
Describe the methodology	for carrying out an ac	id-base titration.	
Describe the methodology	for carrying out an ac	id-base titration.	

Ca _(s)	+ 2H ₂ O _(I) -	→ Ca(OH) _{2(s)} -	+ H _{2(g)}				
							S
		andard solutic	ns and titrati	ons have im	pacted an i	ndustry in	
	the uses of st tions. Use exa		ns and titrati	ons have im	pacted an i	ndustry in	S
			ns and titrati	ons have im	pacted an i	ndustry in	S
			ns and titrati	ons have im	pacted an i	ndustry in	S
			ns and titrati	ons have im	pacted an i	ndustry in	S
			ons and titrati	ons have im	pacted an i	ndustry in	S
			ons and titrati	ons have im	pacted an i	ndustry in	S
			ons and titrati	ons have im	pacted an i	ndustry in	S
			ons and titrati	ons have im	pacted an i	ndustry in	S
			ons and titrati	ons have im	pacted an i	ndustry in	S
			ons and titrati	ons have im	pacted an i	ndustry in	S
			ons and titrati	ons have im	pacted an i	ndustry in	9

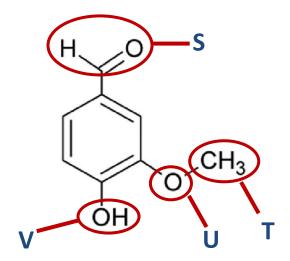
15.

SL 1

SL 2

For Questions 17 and 18, choose and write the LETTER of the correct answer in the box provided.

- 17. Which of the following elements has the most acidic oxide?
 - A. Sodium
 - B. Aluminium
 - C. Chlorine
 - D. Argon
- 18. Which of the following is the chemical formula for silicon chloride?
 - A. SiCl₂
 - B. SiCl₃
 - C. SiCl₄
 - D. SiCl₅
- 19. Describe an observation when a solution of silver nitrate is added to a solution of


potassium chloride.

Explain why ice is less dense than water.	
	9
Some silver nitrate is added to a solution containing chloride ions. Later, dilute	
ammonia is added to the reaction mixture.	
ammonia is added to the reaction mixture. Explain an observation that would be made.	
	9
	9

For Questions 22 and 23, choose and write the LETTER of the correct answer in the box provided.

- 22. Polymers that are formed by single linking of monomer units are called:
 - A. addition polymers.
 - B. substitution polymers.
 - C. condensation polymers.
 - D. natural polymers.
- 23. The **aldehydes** functional group is shown by the letter:

- A. **S**
- B. **T**
- C. | |
- D. **V**

 SL 1

24. Write the equation for the reaction between methanoic acid and methanol in the presence of sulfuric acid.

SL 2

25. Describe a chemical test that you could use to determine the presence of aldehydes.

SL 2

26. State the IUPAC name for the following compound.

$$H_3C$$
 CH_3
 CH_3

SL 2

							SI
1.1.		al salfa l d	·		ula a d		
		ctural formula of	f reactants an	d products, t	the produc	ction	
	names and structoride (PVC) from		f reactants an	d products, t	the produc	ction	
			f reactants an	d products, 1	the produc	ction	
			f reactants an	d products, t	the produc	ction	s
			f reactants an	d products, t	the produc	ction	s
			f reactants an	d products, t	the produc	ction	s
			f reactants an	d products, t	the produc	ction	S
			f reactants an	d products, t	the produc	ction	S
			f reactants an	d products, t	the produc	ction	S
			f reactants an	d products, t	the produc	ction	S
			f reactants an	d products, t	the produc	ction	S
			f reactants an	d products, 1	the produc	ction	S
			f reactants an	d products, t	the produc	ction	S
			f reactants an	d products, 1	the produc	ction	S
			f reactants an	d products, t	the produc	ction	S
			f reactants an	d products, 1	the produc	ction	S

e solvent than water.
e solvent than water.

SL 1

For Questions 31 and 32, choose and write the LETTER of the correct answer in the box provided.

- 31. The law that states that the total enthalpy change for the reaction is the sum of all changes, regardless of multiple stages of a reaction, is known as:
 - A. Boyle's law.
 - B. Newton's law.
 - C. Hess's law.
 - D. Archimedes law.
- 32. The conjugate base of CH₃NH₃⁺ is:
 - A. CH₃NH₃
 - B. $CH_3NH_2^+$
 - C. CH₃NH₂
 - D. NH₃
- 33. Write the equilibrium constant (K_c) for the reaction below:

$$2NH_{3(g)} \rightleftharpoons N_{2(g)} + 3H_{2(g)}$$

		SI
oxidat	in the conversion of natural gas to synthesized gas involves the partial ion of methane with steam to form carbon monoxide and hydrogen. The prium can be represented by the equation:	
oxidat	cion of methane with steam to form carbon monoxide and hydrogen. The prium can be represented by the equation:	
oxidat	ion of methane with steam to form carbon monoxide and hydrogen. The	
oxidat equilik Explair	tion of methane with steam to form carbon monoxide and hydrogen. The prium can be represented by the equation: $CH_{4(g)} + H_2O_{(g)} \rightleftharpoons CO_{(g)} + 3H_{2(g)} \qquad \triangle H = +206 \text{ kJ/mol}$ In how the equilibrium amount (number of moles) of carbon monoxide alter if	
oxidat equilik Explain	cion of methane with steam to form carbon monoxide and hydrogen. The prium can be represented by the equation: $CH_{4(g)} + H_2O_{(g)} \rightleftharpoons CO_{(g)} + 3H_{2(g)} \qquad \triangle H = +206 \text{ kJ/mol}$	
oxidat equilik Explain	tion of methane with steam to form carbon monoxide and hydrogen. The prium can be represented by the equation: $CH_{4(g)} + H_2O_{(g)} \rightleftharpoons CO_{(g)} + 3H_{2(g)} \qquad \triangle H = +206 \text{ kJ/mol}$ In how the equilibrium amount (number of moles) of carbon monoxide alter if	S
oxidat equilik Explain	tion of methane with steam to form carbon monoxide and hydrogen. The prium can be represented by the equation: $CH_{4(g)} + H_2O_{(g)} \rightleftharpoons CO_{(g)} + 3H_{2(g)} \qquad \triangle H = +206 \text{ kJ/mol}$ In how the equilibrium amount (number of moles) of carbon monoxide alter if	SI
oxidat equilik Explair	tion of methane with steam to form carbon monoxide and hydrogen. The prium can be represented by the equation: $CH_{4(g)} + H_2O_{(g)} \rightleftharpoons CO_{(g)} + 3H_{2(g)} \qquad \triangle H = +206 \text{ kJ/mol}$ In how the equilibrium amount (number of moles) of carbon monoxide alter if	Si
oxidat equilik Explair	tion of methane with steam to form carbon monoxide and hydrogen. The prium can be represented by the equation: $CH_{4(g)} + H_2O_{(g)} \rightleftharpoons CO_{(g)} + 3H_{2(g)} \qquad \triangle H = +206 \text{ kJ/mol}$ In how the equilibrium amount (number of moles) of carbon monoxide alter if	SI
oxidat equilik Explair	tion of methane with steam to form carbon monoxide and hydrogen. The prium can be represented by the equation: $CH_{4(g)} + H_2O_{(g)} \rightleftharpoons CO_{(g)} + 3H_{2(g)} \qquad \triangle H = +206 \text{ kJ/mol}$ In how the equilibrium amount (number of moles) of carbon monoxide alter if	Si
oxidat equilik Explair	tion of methane with steam to form carbon monoxide and hydrogen. The prium can be represented by the equation: $CH_{4(g)} + H_2O_{(g)} \rightleftharpoons CO_{(g)} + 3H_{2(g)} \qquad \triangle H = +206 \text{ kJ/mol}$ In how the equilibrium amount (number of moles) of carbon monoxide alter if	SI
oxidat equilik Explair	tion of methane with steam to form carbon monoxide and hydrogen. The prium can be represented by the equation: $CH_{4(g)} + H_2O_{(g)} \rightleftharpoons CO_{(g)} + 3H_{2(g)} \qquad \triangle H = +206 \text{ kJ/mol}$ In how the equilibrium amount (number of moles) of carbon monoxide alter if	Si
oxidat equilik Explair	tion of methane with steam to form carbon monoxide and hydrogen. The prium can be represented by the equation: $CH_{4(g)} + H_2O_{(g)} \rightleftharpoons CO_{(g)} + 3H_{2(g)} \qquad \triangle H = +206 \text{ kJ/mol}$ In how the equilibrium amount (number of moles) of carbon monoxide alter if	Si
oxidat equilik Explair	tion of methane with steam to form carbon monoxide and hydrogen. The prium can be represented by the equation: $CH_{4(g)} + H_2O_{(g)} \rightleftharpoons CO_{(g)} + 3H_{2(g)} \qquad \triangle H = +206 \text{ kJ/mol}$ In how the equilibrium amount (number of moles) of carbon monoxide alter if	Si

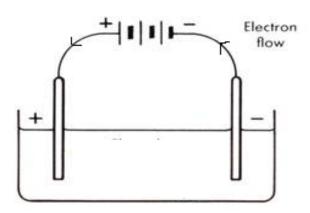
For Questions 36 and 37, choose and write the LETTER of the correct answer in the box provided.

- 36. What is the oxidation number of silicon in MgSiO₃?
 - A. +1
 - B. +2
 - C. +4
 - D. -2
- 37. Which species is reduced in the reaction below?

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$

- A. 8H⁺
- B. MnO₄
- C. Mn
- D. Mn²⁺
- 38. List any TWO oxidising agents.

SL 2


SL 1

39. Describe one observation you would see when a shiny nail (iron) is placed in a copper sulphate solution.

Write the half equa	tion for the anode	e reaction.			
					S
List any TWO rodus	ing agonts				
List any TWO reduc	ing agents.				
\\/*i+o o bolowood bo	.lf		avida II O aatina		
Write a balanced ha	iii equation snowi	ing nyurogen per	oxide, n_2O_2 acting α	as an Oxidant.	
				'	
Write a balanced ba	olf agustion showi	na nitrata ione in	acid colution form	ing nitrogon	
Write a balanced hadioxide.	ili equation showi	ing mitrate ions ii	acid Solution form	ing mitrogen	
					!

44. The diagram below shows equipment set up for the electrolysis of molten sodium chloride.

Label the cathode and anode ends in the diagram above then predict the two ionelectron equations for the half-reactions involved during the electrolysis.

SL 4

45. In a laboratory experiment, a reaction is represented by the equation:

$$4Zn + NO_3^- + 6H_2O + 7OH^- \rightarrow 4[Zn(OH)_4]^{2-} + NH_3$$

Discuss the result of this reaction in terms of electron transfer.

SL 4

STUDENT EDUCATION NUMBER									

CHEMISTRY

2021

(For Scorers only)

	Weighting	Scores	Check Scorer	AED check	
STRAND 1	ATOMIC STRUCTURE AND BONDING	17			
STRAND 2	QUANTITATIVE CHEMISTRY	17			
STRAND 3	INORGANIC CHEMISTRY	10			
STRAND 4	ORGANIC CHEMISTRY	22			
STRAND 5	PRINCIPLES OF PHYSICAL CHEMISTRY	10			
STRAND 6	OXIDATION AND REDUCTION	24			
	TOTAL	100			