

STU	DENT	EDUC	ATION	NUN	1BER	

Samoa Secondary Leaving Certificate

CHEMISTRY 2022

QUESTION and ANSWER BOOKLET

Time allowed: 3 Hours & 10 minutes

INSTRUCTIONS

- 1. You have 10 minutes to read **before** you start the exam.
- 2. Write your Student Education Number (SEN) in the space provided on the top right hand corner of this page.
- 3. **Answer ALL QUESTIONS.** Write your answers in the spaces provided in this booklet.
- 4. If you need more space, ask the Supervisor for extra paper. Write your SEN on all extra sheets used and clearly number the questions. Attach the extra sheets at the appropriate places in this booklet.

NB: The Periodic Table is inserted as a separate sheet.

	STRANDS	Pages	Time (min)	Weighting
STRAND 1	ATOMIC STRUCTURE AND BONDING	2-4	31	17
STRAND 2	QUANTITATIVE CHEMISTRY	5-7	31	17
STRAND 3	INORGANIC CHEMISTRY	8-9	18	10
STRAND 4	ORGANIC CHEMISTRY	10-13	40	22
STRAND 5	PRINCIPLES OF PHYSICAL CHEMISTRY	14-15	18	10
STRAND 6	OXIDATION AND REDUCTION	16-19	42	24
	TOTAL		180	100

Check that this booklet contains pages 2-20 in the correct order and that none of these pages are blank.

HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

ST	.D	Λ	N	П	1	
~ I	ĸ	4	IV	.,		-

ATOMIC STRUCTURE AND BONDING

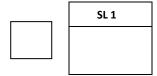
WEIGHTING 17

For Questions 1 to 3, choose and write the LETTER of the correct answer in the box provided.

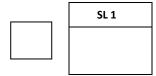
A.	chlorine		
В.	sulfur		SL
C.	sodium		
D.	silicon		
The	shape of an isolated NH₃ molecule is likely to be:		
A.	linear		SL
B.	bent shape		
C.	trigonal		
D.	tetrahedral		
Elect	tronegativity is defined as the:		
A.	energy required to remove an electron from an atom.		SL
B.	shielding effect in an atom.		
C.	electron affinity in an atom.		
D.	measure of how strongly electrons are attracted to the nucleus of an atom.		
Expl	ain why the tetrachloromethane (CCl $_4$) molecule is non-polar, yet it has pods.	olar	
			SL

					- s
					_
					_
					=
					-
Explain in term	s of structure and b	onding why co	opper is a good con	ductor of	
electricity.		, , ,	1112		
					- s
					-
					_
					_
					_
					=
					_
					=
					=
					_
Draw the shape	e of the methane m	olecule.			
					S

Discuss a chemical test that would show magnesium is a metal.	
	SL 4
	31.4
· 	


For Questions 9 to 10, choose and write the LETTER of the correct answer in the box provided.

9. The number of moles of C₂H₆ which contains 30 g of hydrogen is:


$$M(C) = 12 g/mol$$

$$M(H) = 1 g/mol$$

- A. 1
- B. 3
- C. 5
- D. 6

- 10. The equivalence point is the point:
 - A. at which an indicator changes colour during a titration.
 - B. at which no reaction takes place.
 - C. at which a chemical reaction takes place.
 - D. at which an acid or base is neutralized by added base or acid.

11. The formula for calculating the concentration of a solution is:

SL 1

		S
·		
	was provided with 14.3 g of sodium carbonate, 250 mL volumetric flask,	
-	ipettes, a wash bottle, and a supply of distilled water. Using all these, he steps that the student would take to prepare a standard solution of	
sodium ca		
		S
A student	wishes to prepare 250 mL of a 0.20 mol/L solution of the hydrated oxalic	
acid (COO	H) ₂ .2H ₂ O.	
acid (COO		
acid (COO	H) ₂ .2H ₂ O.	
acid (COO	$H)_2.2H_2O.$ the mass of oxalic acid the student would need to weigh.	
acid (COO	$H)_2.2H_2O.$ the mass of oxalic acid the student would need to weigh.	
acid (COO	$H)_2.2H_2O.$ the mass of oxalic acid the student would need to weigh.	SI

.5.	Calcium hydroxide dissolves in water to form a saturated solution (limewater). To determine the concentration of limewater, in mol/L, four separate 10 mL portions (aliquots) of the solution were titrated with 0.125 mol/L standardized hydrochloric acid using bromophenol blue as the indicator. The four titre values were 28.0 mL, 23.9 mL, 24.1 mL and 24.0 mL.	
	Calculate the concentration of the limewater solution.	
		SL 3
16.	Discuss the preparation and uses of titrations in industries in real-life situations.	
		SL 4
	·	

				_	•	
ST	ĸ	Δ	N	I)	≺.	

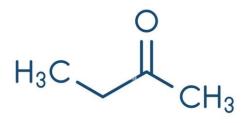
INORGANIC CHEMISTRY

WEIGHTING 10

For Questions 17 and 18, choose and write the LETTER of the correct answer in the box provided.

17.	The tr	rend in the bond type of the chlorides in Period 3 of the Periodic Table is from:		
	A.	ionic to ionic.	Ī	SL 1
	В.	covalent to covalent.		
	C.	ionic to covalent.	┚┃	
	D.	ionic to metallic.		
18.	The cl	hemical formula for sodium oxide is:		
	A.	S_2O		SL 1
	В.	NaO	7 t	
	C.	Na₂O	┚╽	
	D.	NaO ₂		
19.		ibe one observation and name the complex ion formed when excess dilute onia is added to the solution of $AgCl_{(s)}$.		
			_ _	SL 2
			_	
			_	
			_	
			_	
			_	

					SI
				-	31
periodic table.	hium, sodium, and		ame group o	n the	
periodic table.	hium, sodium, and ical properties con		ame group o	n the	
periodic table.			ame group o	n the	S
periodic table.			ame group o	n the	s
periodic table.			ame group o	n the	S
periodic table.			ame group o	n the	S
periodic table.			ame group o	n the	S
periodic table.			ame group o	n the	s
periodic table.			ame group o	n the	S


SL 1

For Questions 22 and 23, choose and write the LETTER of the correct answer in the box provided.

- 22. Which of the following is an aldehyde?
 - A. CH₃-O-CH₃
 - В. **HCOOH**
 - C. CH₃CH=O D. CH₂=CH₂
- 23. The substitution reaction in which carboxylic acids reacts with alcohols to form esters
 - A. Condensation.
 - B. Saponification.
 - C. Polymerization.
 - Esterification. D.

SL 1

24. Name the following compound.

Name of compound:

10

IIIDAC nome:						
IUPAC name:						
Choose ONE polyme	r other than PVC a	nd explain its	use in terms o	f its propert	у.	
, ,		·				
Draw the open struc	ture of glucose.					

on of ethanol to ethanoic acid by acidified potassium dichromate, state in half-equations for the oxidation reaction and discuss an important om the reaction.
n half-equations for the oxidation reaction and discuss an important om the reaction.
n half-equations for the oxidation reaction and discuss an important om the reaction.
n half-equations for the oxidation reaction and discuss an important om the reaction.
n half-equations for the oxidation reaction and discuss an important om the reaction.
n half-equations for the oxidation reaction and discuss an important om the reaction.

Discuss why the solubility of a alcohol increases.	aiconois in Wate	er decreases as	the moiar mass (oi the	
					SI

SL 1

SL 1

SL 2

For Questions 31 and 32, choose and write the LETTER of the correct answer in the box provided.

- 31. The photosynthesis process is an example of:
 - A. An exothermic reaction.
 - B. An endothermic reaction.
 - C. A chemical reaction.
 - D. None of the above.
- 32. The equilibrium constant, K_c for the reaction,

A + B
$$\rightleftharpoons$$
 C + D is defined as:

- A. $K_c = A + B + C + D$
- B. $K_c = C + D + A + B$
- C. $K_c = \frac{[C]^c [D]^c}{[A]^a [B]^c}$
- D. $K_c = \frac{[A]^a [B]^b}{[C]^c [D]^d}$
- 33. Describe the role of a catalyst in a chemical reaction.

34.	Methanol (CH ₃ OH) has been suggested as an alternative for petrol. It burns
	according to the equation:

$$CH_3OH_{(I)} \ + \ 1\%O_{2(g)} \ \rightarrow CO_{2(g)} \ + \ 2H_2O_{(g)}$$

Use the following information to find, $\triangle {\rm H}\textsc{,}$ the enthalpy of reaction for methanol burning.

SL 3

35. Calculate the pH of a 6.50×10^{-3} mol/L for the KOH solution.

SL 3

For Questions 36 and 37, choose and write the LETTER of the correct answer in the box provided.

- 36. The oxidation number of manganese in MnO_4^- is:
 - A. 1
 - B. 3
 - C. 5
 - D. 7
- 37. Which species is oxidised in the reaction below?

$$Zn + 2H^+ \rightarrow Zn^{2+} + H_2$$

- A. Zn
- B. 2H⁺
- C. Zn²⁺
- D. H_2
- 38. List any TWO reducing agents.

39. Describe one observation you would see when a piece of copper metal is placed in concentrated nitric acid.

SL 1

SL 2

SL 1

					SL
					
					
Describe an acid	and its use for a	acidifying oxidiz	ng agents.		
					
					SI
					SI
					SI
					SI
Place the followir	ng compounds o	of chromium in	order of decreas	ing oxidation num	
	ng compounds o	of chromium in	order of decreas	ing oxidation num	

Write the bala	anced half equati	on for the oxidat	ion reaction.		
					SI
brown precipi	of iron metal is pl	rms in the coppe	er sulfate solution	on. If a strip o	
brown precipi placed in a so		rms in the coppe chloride no reac	er sulfate solution tion is observed	on. If a strip o	
brown precipi placed in a so	tate of copper fo lution of calcium	rms in the coppe chloride no reac	er sulfate solution tion is observed	on. If a strip o	S
brown precipi placed in a so	tate of copper fo lution of calcium	rms in the coppe chloride no reac	er sulfate solution tion is observed	on. If a strip o	S
brown precipi placed in a so	tate of copper fo lution of calcium	rms in the coppe chloride no reac	er sulfate solution tion is observed	on. If a strip o	S
brown precipi placed in a so	tate of copper fo lution of calcium	rms in the coppe chloride no reac	er sulfate solution tion is observed	on. If a strip o	S
brown precipi placed in a so	tate of copper fo lution of calcium	rms in the coppe chloride no reac	er sulfate solution tion is observed	on. If a strip o	S
brown precipi placed in a so	tate of copper fo lution of calcium	rms in the coppe chloride no reac	er sulfate solution tion is observed	on. If a strip o	S

45.	The reaction below occurs in the 'breathalyser' when a drunken driver blows into the bag.	
	$3CH_3CH_2OH + 2Cr_2O_7^{2-} + 16H^+ \rightarrow 3CH_3COOH + 11H_2O + 4Cr^{3+}$	
	Discuss the result of this reaction in terms of electron transfer.	
		SL 4
	•	
	· -	

STUDENT EDUCATION NUMBER									

CHEMISTRY

2022

(For Scorers only)

	STRANDS	Weighting	Scores	Check Scorer	AED check
STRAND 1	ATOMIC STRUCTURE AND BONDING	17			
STRAND 2	QUANTITATIVE CHEMISTRY	17			
STRAND 3	INORGANIC CHEMISTRY	10			
STRAND 4	ORGANIC CHEMISTRY	22			
STRAND 5	PRINCIPLES OF PHYSICAL CHEMISTRY	10			
STRAND 6	OXIDATION AND REDUCTION	24			
	TOTAL	100			