

STUDENT EDUCATION NUMBER									

Samoa National Junior Secondary Certificate

CHEMISTRY 2024

QUESTION and ANSWER BOOKLET

Time allowed: 3 Hours & 10 minutes

INSTRUCTIONS

- 1. You have 10 minutes to read **before** you start the exam.
- 2. Write your **Student Education Number (SEN)** in the space provided on the top right-hand corner of this page.
- 3. Answer ALL QUESTIONS. Write your answers in the spaces provided in this booklet.
- 4. If you need more space, ask the Supervisor for extra paper. Write your SEN on all extra sheets used and clearly number the questions. Attach the extra sheets to the appropriate places in this booklet.

Note: Periodic Table on page 24 of the Question Paper.

	STRANDS	Pages	Time (min)	Weighting
STRAND 1	THE WAYS MATERIALS ARE STRUCTURED	2-7	62	34
STRAND 2	THE PROPERTIES AND USES OF SUBSTANCES	8-15	56	32
STRAND 3	THE WAYS MATERIALS ARE CHANGE	16-23	62	34
	TOTAL		180	100

Check that this booklet contains pages 2-25 in the correct order and that none of these pages are blank.

HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

TRUE and FALSE. Choose the BEST answer for Questions 1 to 3 by ticking the appropriate box.

1. Atom is the smallest particle unique to an element.

TRUE FALSE

SL 1

2. A proton is a negatively charged particle.

TRUE

FALSE

SL 1

3. A neutron is a subatomic particle found in the nucleus of an atom.

TRUE

FALSE

SL 1

For Questions 4 and 5, choose and write the LETTER of the correct answer in the box provided.

4. The mass number for the element below is labelled:

- A. A
- B. B
- C. C
- D. D

- 5. A covalent bonding is the type of bonding that:
 - A. transfer electrons.
 - B. used up electrons.
 - C. shares electrons.
 - D. move electrons.

					SL 2
Describe the format	ion of ionic bonds u	sing sodium chl	orida NaCl		
Describe the format	ion or ionic bonds a	sing socium cine	Jilue, Naci.		
					s
		VACCIO III a company			
List any IWO examp	oles of a compound.	Write the corre	ct name and fo	rmula.	
					S
					<u> </u>
Write the TWO isot	opes of hydrogen.				
					SL

Calculate the molar mass of calcium sulphate, CaSO₄. M(Ca) = 40 g/molM(S) = 32 g/molM(O) = 16 g/molSL 2 Write the chemical formula of the **nitrate ion**. 11. SL 2 Calculate the **number of moles** of CH₄ with a mass of 64g. 12. M(C) = 12 g/molM(H) = 1 g/molSL 3

10.

Given:	M(H) = 1 g/mol	M(O) = 16 g/mol	
			S
	n metal (Na) conducts es not conduct electrici	electricity in the solid state whereaty in the solid state.	as sodium
			as sodium

Calculate the percentage of hydrogen in water.

13.

15. A chemistry teacher sets up an experiment, as shown in the diagram above.

Discuss the purpose of the experiment, including any observations and the results obtained.

				SL
		 		
	 	 	<u>.</u>	
,	 	 		

STRAND :	2:
----------	----

THE PROPERTIES AND USES OF SUBSTANCES

WEIGHTING 32

For Questions 17 to 20, choose and write the LETTER of the correct answer in the box provided.

17.	The	chemical formula for washing soda or powder is:	
	A.	NaHCO₃.	SL 1
	В.	NaCl.	
	C.	NaOH.	
	D.	Na ₂ CO ₃ ·	
18.	The	allotropes of sulfur are:	
	A.	diamond and graphite.	SL 1
	В.	monoclinic and rhombic.	
	C.	diamond and rhombic.	
	D.	graphite and monoclinic.	
19.	Whi	ch of the following is an example of a flammable substance?	
	A.	Water	SL 1
	В.	Seawater	
	C.	Diesel	
	D.	River	
20.	Haza	rdous substances are:	
	A.	Substances that are poisonous to living organisms when they are	
		exposed to them.	61.4
	В.	Substances that can chemically erode or degrade materials upon	SL 1
		contact.	
	C.	Substances that can ignite and burn easily.	
	D.	Substances that pose a risk or danger to health, safety, property,	

or the environment.

					5
				L	
				 	
					
Describe how was	shing powder is	used in your h	ousehold.		

		 	9
Describe any TWO uses o	of carbon dioxide (CO ₂)		

25.

		SL
 	 	
 	 	
		 -
		

 	 	5
 	 -	
 	 ·	

					 SI
Explain how any	, household su	ıbstances shou	ld be stored sa	felv.	
Explain how any	household su	ıbstances shou	ld be stored sa	fely.	
Explain how any	household su	ıbstances shou	ld be stored sa	fely.	s
Explain how any	household su	bstances shou	ld be stored sa	fely.	S
Explain how any	household su	bstances shou	ld be stored sa	fely.	S
Explain how any	household su	ibstances shou	ld be stored sa	fely.	S
Explain how any	household su	ıbstances shou	ld be stored sa	fely.	S
Explain how any	household su	bstances shou	ld be stored sa	fely.	S
Explain how any	household su	ibstances shou	ld be stored sa	fely.	S
Explain how any	household su	ibstances shou	ld be stored sa	fely.	S
Explain how any	household su	ibstances shou	ld be stored sat	fely.	S
Explain how any	household su	ibstances shou	ld be stored sa	fely.	S
Explain how any	household su	ibstances shou	ld be stored sat	fely.	S

 			S
 	 	 	

 		_
		
		

STRAND :	3:
----------	----

THE WAYS MATERIALS ARE CHANGED

WEIGHTING 34

For Questions 31 to 33, choose and write the LETTER of the correct answer in the box provided.

31.	Which of the following is NOT a factor that affects the rate of chemical reactions?				
	A.	Temperature.		SI 1	
	В.	Surface area.		SL 1	
	C.	Concentration.			
	D.	Air.			
32.	Whic	ch of the following is an example of chemical change?			
	A.	Boiling water.		SL 1	
	В.	Ice cubes forming.			
	C.	Lighting a match.			
	D.	Mixing sand and salt.			
33.	The	chemical name for the compound, Fe ₂ O ₃ is:			
	A.	iron chloride.		SL 1	
	В.	iron oxide.			
	C.	iron hydroxide.			
	D.	iron oxalate.			
34.	Balar	nce the following chemical equation.			
				SL 2	
		$\underline{\hspace{1cm}}$ Ca + O ₂ \longrightarrow $\underline{\hspace{1cm}}$ CaO			
35.	Write (CaSe	e a balanced chemical equation for a precipitation reaction of calcium \mathfrak{S}_{-}	sulfate		
				SL 2	

		SL
	ervations that help you to determine when a chemical reaction has	
	ervations that help you to determine when a chemical reaction has	
	ervations that help you to determine when a chemical reaction has	
	ervations that help you to determine when a chemical reaction has	SL
	ervations that help you to determine when a chemical reaction has	SL
	ervations that help you to determine when a chemical reaction has	SL
	ervations that help you to determine when a chemical reaction has	SL
Describe any obsetaken place.	ervations that help you to determine when a chemical reaction has	SL
	ervations that help you to determine when a chemical reaction has	SL
	ervations that help you to determine when a chemical reaction has	SL

വ	A chemistry				<u> </u>	:.a +la - a		
≺×	A Chemistry	STUMENT CO	nalictea th	e eynerimen	T NANICTAN	In the c	ilagram anni	VA.
JU.		JUGUETIL CO	Hudeled th	CCADCIIIICII	LUCDICICU	111 11111111111111111111111111111111111		v.

Describe the type of reaction that occurred and provide an example, including balanced chemical equation.	a
	

39. Rusting is a serious and costly problem Rust weakens steel and iron structures. The process of rusting in iron occurs under specific conditions illustrated in the diagram above.

Discuss the expected result in terms of rusting, in test tubes A, B and C.

40.	Discuss any FOUR applications of the rate of reactions in real-life situations.	
		_
		SL 4
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_

41. Iron has many properties, and one example is that it can rust. For iron to rust it needs certain conditions.

Discuss any observation of the result based on the conditions shown in the diagram above.

42. Most carbonates usually do not dissolve in water (insoluble) as shown in the illustration below.

Describe the result of the chemical reaction shown above. [Hint: products of the reaction above]

43.	In biological reactions, catalysts are usually protein molecules called enzymes .		
	Discuss how catalysts can increase the rate of a reaction.		
		F	
		_	SL 4

	22 H _ 0 _ 55 8 R _ 37 2 K _ 1	1
	drogen 1008 Milliam 1591 Milliam 1591 Milliam 1591 Milliam 1591 Milliam 1590 Millia	_
	2 4 Be Beryllium 9,012 12 Mg Nagnesium 2,012 12 Calcium 40,078 87,62 56 Ba Baium 137,327 88 Radium Radium 226,025	
57 	3 Sc Scandium 44.956 39 Yttrium 88.906 57-71 Lanthanides Actinides	
La uthanum 18.906	4 22 Ti Titanium 47.88 40 Zr Zirconium 91.224 72 Tirconium 178.49 104 Rutherfordium 178.49	
58 Ce Cerium 140.115	5 23 Vanadium 50.942 41 Niobium 92.906 73 Ta Tan 105 Dubnium page 105 Dubnium	
Pr Pr Pracodymium 140.908 91 Pa Protactinium 231.036	6 24 Chromium 51.996 42 Mo Pholibdenum 95.94 74 74 83.85 106 Sg Seaborgum [2.66]	₽
Neodymium 144.24 92 Uranium 238.029	7 25 Mn Manganese 54.938 TC 75 PRe Rhenium 186.207 Bh Bohrium 186.207	Periodic Table of the Elements
Pm Promethium Promethium 144.913 93 Np Neptunium 237.048	8 26 Fe Iron St. 933 108 108 Hs. 1269]	dic T
62 Sm Samarium 150.36 94 Putonium 244.064	9 27 Co Cobalt \$8,933 109 109 109 109 Mt Mt 1268	able
63 Europium 151.966 95 Am Americium 243.061	10 Nickel Nickel 10 10 10 10 10 10 10 10 10 1	of t
Gadolinium 157.25 96 Cm Curium 247.070	11 29 29 Cu Copper 3 63.546 Au Gold 111 111 Rg Roengenium [7/2]	he E
65 Tb Terbium 158.925 97 BK Berkelium 247.070	12 12 12 12 12 12 12 12 12 12 12 12 12 1	lem
Dy Dysprosium 16250 98 Californium 251,080	## C 1 22 H .8 = # 49 & 6 A 3 2 2 & 3 = B	ents
Homium Holmium 164.930 99 ES Ensceinium	13 14 B Carbon Silicon 12011 Al Si Silicon 12018 Al Si Silicon 12018 Fo 114 Jut FI Herovium 1289]	
68 Erium 167.26 100 Fm Fermium 257.095		
Tm Thulium 101 Mendelevium	5 Senice Segment of the Property of the Proper	
70 Yb Ytarbium 173.04 102 100 Nobelium Nobelium 259.101	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
71 Lu Luceium 4 174.967 103 Lr Lawrencium 103 Lr Lawrencium 1262]	7 Virial	٦
ium 367 7 7	10 Ne Ne Nypton 94.80 54 Xe	8

STUDENT EDUCATION NUMBER									

SNJSC CHEMISTRY

2024

(For Scorers only)

	STRANDS	Weighting	Scores	Check Scorer	AED Check
STRAND 1	THE WAYS MATERIALS ARE STRUCTURED	34			
STRAND 2	THE PROPERTIES AND USES OF MATERIALS	32			
STRAND 3	THE WAY MATERIALS CHANGED	34			
	TOTAL	100			