

STUDENT EDUCATION NUMBER									

Samoa National Junior Secondary Certificate

PHYSICS 2024

QUESTION and ANSWER BOOKLET

Time allowed: 3 Hours & 10 minutes

INSTRUCTIONS

- 1. You have 10 minutes to read **before** you start the exam.
- 2. Write your **Student Education Number (SEN)** in the space provided on the top right-hand corner of this page.
- 3. **Answer ALL QUESTIONS.** Write your answers in the spaces provided in this booklet.
- 4. If you need more paper to write your answers, ask the supervisor. Write your SEN on all extra sheets used and clearly number the questions. Attach the extra sheets to the appropriate places in this booklet.
- 5. All the formulas required are provided on the last page.

	STRANDS	Pages	Time (min)	Weighting
STRAND 1	ENERGY (WAVES)	2-6	45	25
STRAND 2	ELECTRICITY	7-10	45	25
STRAND 3	MAGNETISM	11-15	45	25
STRAND 4	FORCES AND MOTION	16-19	45	25
	TOTAL	•	180	100

Check that this booklet contains pages 2 - 21 in the correct order and that none of these pages are blank.

HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

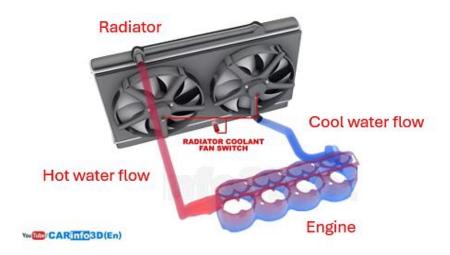
STRAI	ND 1	ENERGY (WAVES)	WEIGHTING 2
For Q	uestio	ns 1 to 3, choose and write the LETTER of the corre	ect answer in the box provided.
1.		is the transfer of heat through a solid n	naterial by direct contact of
	its p	articles.	
	A.	Conduction	SL 1
	В.	Convection	311
	C.	Radiation	
	D.	Transportation	
2.	If a v	vave has a frequency of 10 Hertz, what is its period	?
	A.	100 seconds.	
	В.	10 seconds.	SL 1
	C.	0.10 seconds.	
	D.	0.01 seconds.	
3.		loudness of sound is determined by the intensity, oes. What is the unit of sound intensity?	r amount of energy, in sound

Hertz

Equalizer

Ampere

Decibel


A.

В. С.

D.

SL 1

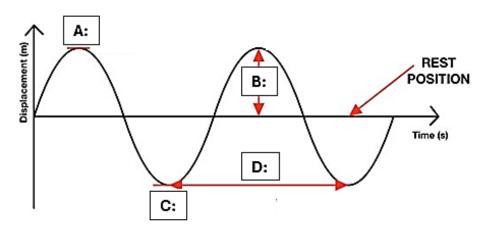
The diagram below is a 3D diagram of a car engine cooling system.

https://www.youtube.com/watch?app=desktop&v=k0ovUHEOtyE

		SL
		
Describe how temp	erature difference affects the rate of heat transfer.	
		SL

The table below shows the change in size of the two metals after boiling in water for 2 hours.

Metals	Lengtl	n (cm)	Change in Length	Coefficient of linear
	Initial length	Final length	(ΔL) (cm)	expansion
	(L_i)	(L_f)	$\Delta L = L_f - L_i$	(°C-1)
Aluminum	5.2	5.9		23×10^{-6}
Copper	5.6	5.9		17×10^{-6}


6. Use the formula given to calculate and fill in the column (change in length (ΔL)) of the table above. Comment on the difference between the values you calculated with reference to the coefficient of linear expansion of each metal.

SL 4

7. Name parts A and B of a transverse wave shown in the diagram below.

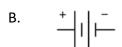
SL 2

A. _____

B. _____

				s
seconds.				
seconds.				5
seconds.				5
seconas.				S
seconds.				S
seconas.				S
seconds.				S
seconds.				S
seconds.				5

						
						SL
					<u>.</u> .	
Briefly explain v	/hat happens to	o the speed of a	sound wave whe	n it travels fror	m air	
	vhat happens to	o the speed of a	sound wave whe	n it travels fror	m air	
	vhat happens to		sound wave whe			SL
	vhat happens to					SL
	vhat happens to					SL


SL 1


SL 1

For Questions 12 to 14, choose and write the LETTER of the correct answer in the box provided.

12.	Which of the following is the symbol for the battery component?
-----	---

13. Which of the following is **NOT** a Conductor?

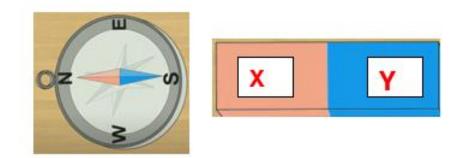
- A. Rubber band
- B. Ionized Water

- 14. ______ is the measure in Volts of electric potential difference between two points in a circuit.
 - A. Voltage
 - B. Current
 - C. Energy
 - D. Resistance

SL 1

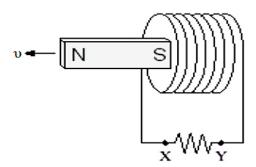
 Explain the difference between closed circuit and open circuit. You can use diagrams if needed.

SL 2

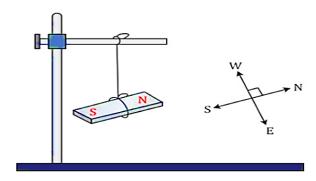

16.	Explain why all metals are good conductors of electric current.	
		SL 3
		
Jse th	e diagram below to answer Questions 17 to 19.	
he to	tal Current in both circuits is 3 Amperes, and all bulbs are identical having resistance of	1 ohm.
	Circuit A Circuit B	
17.	Name the two-circuit diagrams above and compare their advantages.	
		SL 2

18. If the total current flow in both circuits is 3 Amperes, and each bulb has 1-ohm (1 Ω) resistor. What will be the current passed across each bulb in Circuit B? Explain your answer. SL 3 19. Calculate the total voltage supply by the battery in Circuit A. SL 2 20. What is the value of the third resistor connected in parallel across 6 ohms and 4 ohms to give a current supply from the source of 5 A? Show working. 20 V SL 4 4Ω 6Ω R₃

			
	al expression to clearly demonstrate th	ne relationship of \	V ₁ , V ₂ ,
V ₃ , and V ₄ in the circ	THE BOLOW		
	uit below.		
	uit below.		
			S
			S
			S
			S
			S
			S
			S
	V ₁ V ₂ V ₄		S


STRAI	ND 3	MAGNETISM	WEIG	SHTING 25
For Q	uestior	ns 23 to 25, write the letter of your BEST answer in the box provided.		
23.	Whic	ch of the following statements is TRUE about the Law of Magnets?		
	A.	South Pole repels North Pole.	[
	В.	North Pole repels South Pole.		SL 1
	C.	Like poles repel, unlike poles attract.		
	D.	Like poles attract, unlike poles repel.		
24.	A ma	agnet generated from electricity (electric field) is also known as:		
	A.	Magnetic field.	ſ	
	В.	Permanent Magnet.		SL 1
	C.	Temporary Magnet.		
	D.	Electromagnet.		
25.	Whic	ch method is used in making a strong magnet?		
	A.	Electrical method	ſ	
	В.	Stroking method		SL 1
	C.	Hammering method		
	D.	Heating method		
26.	Expla	ain why like poles repel and unlike poles attract.		
				SL 3

Use the diagram below of a compass position closed to one end of a bar magnet to answer Question 27.


				 		CI
						SL
				 	 	
					·	
State any tw	o methods of o	destroying mag	gnetism.			
State any tw	o methods of (destroying mag	gnetism.			
State any tw	o methods of o	destroying mag	gnetism.			
State any tw	o methods of o	destroying mag	gnetism.			SL
State any tw	o methods of o	destroying mag	gnetism.			SL
State any tw	o methods of o	destroying mag	gnetism.			SL
State any tw	o methods of o	destroying mag	gnetism.			SL

A bar magnet is moved away from a coil as shown.

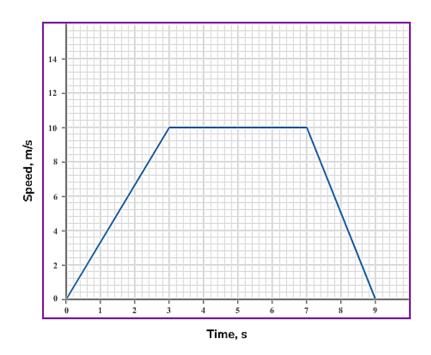
Describe how the speed of the bar magnet and the number of turns in the coil affect	
the current through the resistor.	
	SI

The diagram below shows a freely suspended bar magnet. Use this information to answer Question 30.

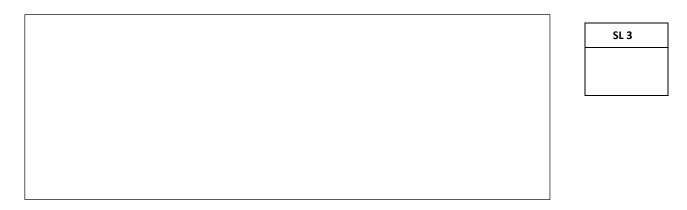
30. Briefly explain why a freely suspended magnet always rests at the geographic (or earth) north-south direction.

St. 2

31. List at least three uses of permanent magnets in everyday life.


St. 3

Use the information below to answer Questions 32 and 33.


Tulia from RLSS did an experiment on creating a permanent magnet. He used an iron nail, a 12 V power supply, a long piece of insulated copper wire and some iron paper pins.	
Below are the steps or procedures which are not in order for doing his experiment.	
Procedures:	
A. For electric current to flow through the copper wire plug in the power supply, adjust the volts to 6 V and turn it on.	
B. Test the electromagnet by positioning the tip of the nail to some paper clips.	
C. Coil/wrap the copper wire tightly around the iron nail.	
D. Connect the ends of the wire to the power supply using the DC terminals.	
Arrange the list of procedures/steps above for Tulia to carry his experiment successfully. (Step #4 is done for you). Step 1:	SL 3
Step 2:	3L 3
Step 3:	
Step 4:B	
Tulia increased the volts to 12V and again tested the experiment.	
Write an observation and conclusion of this experiment when Tulia successfully carries out his experiment.	
	SL 4
,	
·	
··	

		WEIGHTING 2
uestio	ns 34 to 36, write the letter of your BEST answ	er in the box provided.
Wh	ich of the following is NOT a Vector quantity?	
A.	Mass	
В.	Displacement	SL 1
C.	Weight	
D.	Velocity	
Wh	at is the correct SI unit for speed?	
A.	m/s	
В.	ms^1	SL1
C.	ms^2	
D.	m/s^2	
The	known density of water is:	
A.	1.00 kg/m^3	
В.	10.00kg/m^3	SL 1
C.	100.00kg/m ³	
D.	1000.00 kg/m ³	
Ske	tch and label a vector diagram to represent the	vector information given below.
A te	ennis ball is moving at 5 m/s above horizontal a	t an angle of 25° (North of East).
		SL 2

USE the figure below to answer Questions 38 and 39.

38. Calculate the lowest and the highest accelerations experienced by the moving object.

39. What is the total distance travelled by the object during the first 7 seconds?

		SL:
Describ	e what inertia is in relation to mass and force.	
		SL :
	· · · · · · · · · · · · · · · · · · ·	
e diagrar	ns below to answer Question 42.	
e diagrar	ns below to answer Question 42. Plunger Atmospheric Pressure Pressure Admospheric Pressure	
e diagrar	Plunger Atmospheric Pressure	
	Plunger Atmospheric Pressure	
	Plunger Atmospheric Pressure Medicine	
	Plunger Atmospheric Pressure Medicine	

			
nsity of a copper mate answer in g/cm ³ .	erial if its mass is 0.12	kg and has a volume	of 14
			S
	cm ³ of water when full nd the apparent weight		
f water 1000 kgm ⁻³)			
			S

FORMULAS

$$Q = mc\Delta T$$

$$V = IR$$

$$f = \frac{1}{T}$$

$$R_T = R_1 + R_2 + R_n$$

$$T = \frac{1}{f}$$

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_n}$$

$$v = f\lambda$$

Forces and Motion

$$v = \frac{d}{t}$$

$$F = ma$$

$$a = \frac{\Delta v}{\Delta t}$$

$$Pressure = F/A$$

$$v = u + at$$

$$Density = m/V$$

$$v^2 = u^2 + 2as$$

$$Weight = mg$$

$$s = ut + \frac{1}{2}at^2$$

$$F_b = \rho g V$$

$$s = \left(\frac{v+u}{2}\right)t$$

Constants

$$c_w = 4200\,J/kg^0C$$

$$g = 10 \ ms^{-2}$$

STUDENT EDUCATION NUMBER									

SNJSC PHYSICS

2024

(For Scorers only)

	STRANDS	Weighting	Scores	Check Scorer	AED check
STRAND 1	ENERGY (WAVES)	25			
STRAND 2	ELECTRICITY	25			
STRAND 3	MAGNETISM	25			
STRAND 4	FORCES AND MOTION	25			
	TOTAL	100			