

| STUDENT EDUCATION NUMBER |  |  |  |  |  |  |  |  |  |
|--------------------------|--|--|--|--|--|--|--|--|--|
|                          |  |  |  |  |  |  |  |  |  |

# Samoa Secondary Leaving Certificate

# CHEMISTRY 2024

### **QUESTION and ANSWER BOOKLET**

Time allowed: 3 Hours & 10 minutes

#### **INSTRUCTIONS**

- 1. You have 10 minutes to read **before** you start the exam.
- 2. Write your **Student Education Number (SEN)** in the space provided on the top right hand corner of this page.
- 3. Answer ALL QUESTIONS. Write your answers in the spaces provided in this booklet.
- 4. If you need more space, ask the Supervisor for extra paper. Write your SEN on all extra sheets used and clearly number the questions. Attach the extra sheets to the appropriate places in this booklet.

#### NB: The Periodic Table is attached on page 23 of the exam paper.

|          | STRANDS                          | Pages | Time (min) | Weighting |
|----------|----------------------------------|-------|------------|-----------|
| STRAND 1 | ATOMIC STRUCTURE AND BONDING     | 2-4   | 27         | 15        |
| STRAND 2 | QUANTITATIVE CHEMISTRY           | 5-8   | 31         | 17        |
| STRAND 3 | ORGANIC CHEMISTRY                | 9-12  | 34         | 19        |
| STRAND 4 | INORGANIC CHEMISTRY              | 13-14 | 18         | 10        |
| STRAND 5 | PRINCIPLES OF PHYSICAL CHEMISTRY | 15-16 | 18         | 10        |
| STRAND 6 | OXIDATION AND REDUCTION          | 17-20 | 36         | 20        |
| STRAND 7 | ENVIRONMENTAL CHEMISTRY          | 21-22 | 16         | 9         |
|          | TOTAL                            |       | 180        | 100       |

Check that this booklet contains pages 2-24 in the correct order and that none of these pages are blank.

HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

| STRAN | D 1: ATOMIC STRUCTURE AND BONDING                                              | WEIGHTING 15 |
|-------|--------------------------------------------------------------------------------|--------------|
|       |                                                                                |              |
| 1.    | The position of each atom in a molecule gives the molecule a particular shape. |              |

|                                        | each atom in a molecule g<br>I important molecular shap |                          |                   |        |
|----------------------------------------|---------------------------------------------------------|--------------------------|-------------------|--------|
| Name a molecu                          | le with a linear shape.                                 |                          |                   | S      |
|                                        |                                                         |                          |                   | _      |
| Describe <b>ONE</b> to periodic table. | rend of the ionic radius acr                            | oss Period 3 or withi    | n Group 17 on the |        |
|                                        |                                                         |                          |                   | _ s    |
|                                        |                                                         |                          |                   | -<br>- |
| Draw the elect                         | on dot diagram for the CH                               | l <sub>4</sub> molecule. |                   | _      |
|                                        |                                                         |                          |                   | SL 2   |
|                                        |                                                         |                          |                   |        |
|                                        |                                                         |                          |                   |        |
|                                        |                                                         |                          |                   |        |

| Fundain have an atom above    | s to on ion                |                      |             |  |
|-------------------------------|----------------------------|----------------------|-------------|--|
| Explain how an atom change    | s to an ion.               |                      |             |  |
|                               |                            |                      | <del></del> |  |
|                               |                            |                      |             |  |
|                               |                            |                      |             |  |
|                               |                            |                      |             |  |
|                               |                            |                      |             |  |
|                               |                            |                      |             |  |
| <del></del>                   |                            |                      |             |  |
|                               |                            |                      |             |  |
|                               |                            |                      |             |  |
|                               |                            |                      |             |  |
|                               |                            |                      |             |  |
|                               |                            |                      |             |  |
|                               |                            |                      |             |  |
|                               |                            |                      |             |  |
|                               |                            |                      |             |  |
| Copper is an excellent condu  | ctor of electricity due to | its unique propertie | S.          |  |
| Explain in terms of structure |                            |                      |             |  |
| Explain in terms of structure |                            |                      |             |  |
| Explain in terms of structure |                            |                      |             |  |
| Explain in terms of structure |                            |                      |             |  |
| Explain in terms of structure |                            |                      |             |  |
| Explain in terms of structure |                            |                      |             |  |
| Explain in terms of structure |                            |                      |             |  |
| Explain in terms of structure |                            |                      |             |  |
| Explain in terms of structure |                            |                      |             |  |
| Explain in terms of structure |                            |                      |             |  |
| Explain in terms of structure |                            |                      |             |  |
| Copper is an excellent condu  |                            |                      |             |  |

6. Discuss why the tetrachloromethane (CCl<sub>4</sub>) molecule has polar bonds but the molecule is non-polar as shown in the diagram below:



Source: https://www.chemistrylearner.com/polarity/ccl4-polarity

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
|      |
| <br> |
| <br> |
|      |

SL 1

SL 1

SL 1

For Questions 7 to 9, choose and write the LETTER of the correct answer in the box provided.

- 7. The symbol "(aq)" in chemical equations denotes that the substance is in a/an:
  - A. gas state.
  - B. solid state.
  - C. liquid state.
  - D. aqueous state.
- 8. In analytical chemistry, a standard solution is either the titrant or titrator.

A standard solution is defined as:

- A. solution with a low pH.
- B. solution with a high pH.
- C. solution for which the concentration is accurately known.
- D. solution for which the concentration is accurately unknown.
- 9. Avogadro's number, which gives the number of units in one mole of a substance, is:
  - A. 6.02 x 10<sup>-23</sup> mol<sup>-1</sup>
  - B. 8.314 J/mol·K
  - C.  $6.62607015 \times 10^{-34}$  joule-hertz<sup>-1</sup>
  - D. 96,485.3399 Coulombs per mole

10. A student wishes to prepare 250 mL of a 0.20 mol/L solution of oxalic acid (COOH)<sub>2</sub>.2H<sub>2</sub>O.

Calculate the mass of oxalic acid the student would need to weigh.

$$M((COOH)_2.2H_2O) = 126 \text{ g/mol}$$



SL 2

11. The two-glassware given in the diagram below are used in preparing solutions for titrations. Name the **TWO** glassware.



500<sup>ml</sup>

|           | um burns in air to form magnesiur $2Mg_{(s)} + O_{2(g)}$     |                                         | JII 15. |
|-----------|--------------------------------------------------------------|-----------------------------------------|---------|
| A studen  | t weighed out 2.4 g of magnesium                             | and burned it in the air.               |         |
|           | the number of moles of magnesic                              |                                         |         |
|           | M(Mg) = 24 g/mol                                             | M(O) = 16 g/mol                         |         |
|           |                                                              |                                         | SL 3    |
|           |                                                              |                                         |         |
|           |                                                              |                                         |         |
|           |                                                              |                                         |         |
|           |                                                              |                                         |         |
|           |                                                              |                                         |         |
|           |                                                              |                                         |         |
|           |                                                              |                                         |         |
|           | solution of hydrochloric acid cont<br>adding 90 mL of water. | taining 0.04 mol of solute is diluted t | 0       |
| 100 mL by |                                                              |                                         | 0       |
| 100 mL by | adding 90 mL of water.                                       |                                         | 70      |

| Standard solutions can be used for both the qualitative and quantitative analysis of substances. |   |
|--------------------------------------------------------------------------------------------------|---|
| Discuss <b>ONE</b> use of standard solutions in industries.                                      |   |
|                                                                                                  |   |
|                                                                                                  | _ |
|                                                                                                  |   |
|                                                                                                  |   |
| ,                                                                                                |   |
|                                                                                                  |   |
|                                                                                                  |   |
|                                                                                                  |   |
|                                                                                                  |   |
|                                                                                                  |   |
|                                                                                                  |   |
|                                                                                                  |   |
|                                                                                                  |   |
|                                                                                                  |   |
|                                                                                                  |   |
|                                                                                                  |   |
|                                                                                                  |   |

| СТ  | 'RA | N     | Э.    |
|-----|-----|-------|-------|
| ~ I | K L | A I V | <br>• |
|     |     |       |       |

#### **ORGANIC CHEMISTRY**

**WEIGHTING 19** 

For Questions 15 and 16, choose and write the LETTER of the correct answer in the box provided.

| A.   | O-H                                                                                                                         | SI |
|------|-----------------------------------------------------------------------------------------------------------------------------|----|
| B.   | C=O-O-H                                                                                                                     |    |
| C.   | C=O-O                                                                                                                       |    |
| D.   | C=O                                                                                                                         |    |
| Whic | th of the following is the functional group for aldehydes?                                                                  |    |
| A.   | O-H                                                                                                                         | SI |
| В.   | C=O-O-H                                                                                                                     | 3. |
| C.   | CH=O                                                                                                                        |    |
| D.   | C=OO                                                                                                                        |    |
|      |                                                                                                                             |    |
|      |                                                                                                                             | SL |
|      |                                                                                                                             |    |
|      |                                                                                                                             |    |
|      |                                                                                                                             |    |
|      |                                                                                                                             |    |
| -    | rinyl chloride is the world's third most widely produced synthetic polymer. ny <b>TWO</b> uses of polyvinyl chloride (PVC). |    |

The bromine test is a straightforward method used to distinguish between alkanes and alkenes.



Source: https://cdn1.byjus.com/wp-content/uploads/2019/05/bromine-test.png

|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>           |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del></del>        |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| mportant carl                    | mple sugar with the molecular formula, $C_6H_{12}O_6$ . It is one of the pohydrates, serving as a primary energy source for cells. The state of the s | tructure           |
| mportant carl<br>of glucose can  | boohydrates, serving as a primary energy source for cells. The some be represented in several ways, including its linear and cyclic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tructure           |
| mportant carl<br>of glucose can  | pohydrates, serving as a primary energy source for cells. The s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tructure           |
| mportant carl<br>of glucose can  | boohydrates, serving as a primary energy source for cells. The some be represented in several ways, including its linear and cyclic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tructure           |
| mportant carl<br>of glucose can  | boohydrates, serving as a primary energy source for cells. The some be represented in several ways, including its linear and cyclic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tructure           |
| mportant carl<br>of glucose can  | boohydrates, serving as a primary energy source for cells. The some be represented in several ways, including its linear and cyclic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tructure<br>forms. |
| important carl<br>of glucose can | boohydrates, serving as a primary energy source for cells. The some be represented in several ways, including its linear and cyclic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tructure           |
| important carl<br>of glucose can | boohydrates, serving as a primary energy source for cells. The some be represented in several ways, including its linear and cyclic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tructure<br>forms. |

| <br> | <br> | _           |
|------|------|-------------|
|      |      |             |
|      |      |             |
|      |      | <del></del> |
| <br> | <br> |             |
| <br> | <br> |             |
| <br> | <br> |             |
|      |      |             |
|      |      | <del></del> |
| <br> |      |             |
| <br> | <br> |             |
| <br> | <br> |             |
|      |      |             |
|      |      | <del></del> |
| <br> | <br> |             |
| <br> |      | <del></del> |
| <br> | <br> | <del></del> |
|      |      |             |
|      |      | <del></del> |
| <br> | <br> |             |
| <br> | <br> | _           |
| <br> | <br> | _           |
|      |      |             |

When a few drops of water are added to a calcium carbide lump,  ${\bf Gas}~{\bf X}$  forms as shown in the diagram below.



Discuss  $\mathbf{ONE}$  observation that can be made when  $\mathbf{Gas}\ \mathbf{X}$  is being produced in the above experiment.

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> |      |  |
|      | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
| <br> | <br> |  |
| <br> | <br> |  |
| <br> |      |  |

| _   |    |   |    |   |    |
|-----|----|---|----|---|----|
| СТ  | .D | Λ | NI | n | 4: |
| . J | n  | н | IV | u | 4. |

#### **INORGANIC CHEMISTRY**

**WEIGHTING 10** 

SL 1

SL 1

SL 2

For Questions 23 and 24, choose and write the LETTER of the correct answer in the box provided.

| 23. | Which of the following is an example of an acidic oxide? |  |
|-----|----------------------------------------------------------|--|
|     |                                                          |  |

- A. Na<sub>2</sub>O
- B. CaO
- C. MgO
- D. SO<sub>2</sub>



- A. solubility.
- B. volume.
- C. salinity.
- D. concentration.



(i)  $[Cu(NH_3)_4]^{2+}$ 

| (ii) | $[Ag(NH_3)_2]^+$ |
|------|------------------|

\_\_\_\_\_

26. Write a balanced equation for the reaction of sodium chloride, NaCl and water,  $H_2O$ .

\_\_\_\_\_\_



Source: https://gph.cf2.quoracdn.net/main-qimg-0c62b84b8704827111e03c3072fd74b7-lq

| 27. | Ice is a solid substance produced by the freezing of water vapour or liquid water. |      |
|-----|------------------------------------------------------------------------------------|------|
|     | Explain why ice is less dense than water.                                          |      |
|     |                                                                                    | -    |
|     |                                                                                    | SL 3 |
|     |                                                                                    | -    |
|     |                                                                                    | -    |
|     |                                                                                    | -    |
|     |                                                                                    | -    |
|     |                                                                                    | -    |
|     |                                                                                    | -    |
|     |                                                                                    | _    |
|     |                                                                                    | -    |
|     |                                                                                    | -    |
|     |                                                                                    | -    |

SL 1

SL 1

SL 2

For Questions 28 and 29, choose and write the LETTER of the correct answer in the box provided.

- 28. Amphiprotic is defined as the substance that:
  - A. can either accept or donate protons.
  - B. accepts only protons.
  - C. donates only protons.
  - D. cannot accept or donate protons.
- 29. Which of the following is an example of an **exothermic reaction**?
  - A. Photosynthesis.
  - B. Making ice cream in a bag.
  - C. Ice melts.
  - D. Respiration.
- 30. Write the equilibrium constant  $(K_c)$  expression for the reaction below:

$$N_{2(g)} \hspace{3mm} + \hspace{3mm} O_{2(g)} \hspace{3mm} \leftrightarrows \hspace{3mm} 2NO_{(g)}$$

31. Find the  $[\mathbf{H}^+]$  and the  $[\mathbf{OH}^-]$  of a solution with a pH of 3.49.

32. Use the information listed below, to find the  $\Delta H$ , the heat of reaction, when methane burns according to the equation:

For Questions 33 and 34, choose and write the LETTER of the correct answer in the box provided.

| ine c  | exidation number of $\mathbf{N}^-$ is:                                                             |       |
|--------|----------------------------------------------------------------------------------------------------|-------|
| A.     | -3                                                                                                 | SL 1  |
| В.     | -2                                                                                                 | - 521 |
| C.     | -1                                                                                                 |       |
| D.     | 0                                                                                                  |       |
|        | n a chemical change occurs and when an electric current is passed through an rolyte, it is called: |       |
| A.     | electrolysis.                                                                                      |       |
| В.     | conduction.                                                                                        | SL 1  |
| C.     | refluxing.                                                                                         |       |
| D.     | saponification.                                                                                    |       |
|        |                                                                                                    |       |
| List T | WO common oxidizing agents.                                                                        | SL 2  |
| A stu  | dent placed a piece of copper metal in concentrated hydrochloric acid.                             | SL 2  |
|        | dent placed a piece of copper metal in concentrated hydrochloric acid.                             | SL 2  |
|        | dent placed a piece of copper metal in concentrated hydrochloric acid.                             | SL 2  |

|                         |           |                                        |                 |              | SI |
|-------------------------|-----------|----------------------------------------|-----------------|--------------|----|
|                         |           |                                        |                 |              |    |
|                         |           |                                        |                 |              |    |
|                         |           |                                        |                 |              |    |
|                         |           |                                        |                 |              |    |
|                         |           |                                        |                 |              |    |
|                         |           |                                        |                 |              |    |
|                         |           |                                        |                 |              |    |
| Arrange th<br>number of | chlorine. | compounds in a                         | rder based on t | he oxidation |    |
|                         |           | compounds in a $\operatorname{HOCl}_4$ |                 | he oxidation |    |
|                         | chlorine. |                                        |                 | he oxidation | s  |
|                         | chlorine. |                                        |                 | he oxidation | S  |
|                         | chlorine. |                                        |                 | he oxidation | S  |
|                         | chlorine. |                                        |                 | he oxidation |    |

|                          | SL |
|--------------------------|----|
| Oxidation half equation. |    |
|                          |    |
|                          |    |
|                          |    |
|                          |    |
|                          |    |
|                          |    |
|                          |    |
| Reduction half equation. |    |
|                          |    |
|                          |    |
|                          |    |
|                          |    |

Consider the reaction where Sulphur dioxide gas is bubbled through acidified

39.

potassium dichromate.



40. Discuss the observations made at the electrodes during the electrolysis of aqueous NaCl, as depicted in the above diagram.

Your response should include the chemical equations for the reactions that occur at

both the cathode and anode electrodes.

SI.4

For Questions 41 and 42, choose and write the LETTER of the correct answer in the box provided.

| ine   | greenhouse effect is a natural process:                                                                                                |     |      |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| A.    | for producing oxygen.                                                                                                                  |     |      |
| В.    | for producing energy.                                                                                                                  | 1 [ | SL 1 |
| C.    | that depletes the ozone.                                                                                                               |     |      |
| D.    | that warms the earth's surface.                                                                                                        | L   |      |
| Cinc  | ler cones is a type of:                                                                                                                |     |      |
| A.    | biomass energy.                                                                                                                        |     |      |
| В.    | volcano.                                                                                                                               | , [ | SL 1 |
| C.    | greenhouse gas.                                                                                                                        |     |      |
| D.    | natural acids.                                                                                                                         | L   |      |
|       | gy sources take many forms, including nuclear energy, fossil, wind, solar, hermal, and hydropower. Some are renewable, others are not. |     |      |
| Disti | nguish between renewable and non-renewable energy sources.                                                                             |     |      |
|       |                                                                                                                                        |     | SL 2 |
|       |                                                                                                                                        |     |      |
|       |                                                                                                                                        |     |      |
|       |                                                                                                                                        |     |      |

| Describe the stratosphere.                                          |               |
|---------------------------------------------------------------------|---------------|
| Describe the stratosphere.                                          |               |
|                                                                     |               |
|                                                                     |               |
|                                                                     |               |
|                                                                     |               |
|                                                                     |               |
|                                                                     | <del></del>   |
|                                                                     | <del></del>   |
|                                                                     | <u></u>       |
|                                                                     |               |
| - 1                                                                 |               |
| Explain <b>ONE</b> importance of renewable energy sources in Samoa. |               |
|                                                                     |               |
|                                                                     |               |
|                                                                     | <del></del>   |
|                                                                     | <del></del>   |
|                                                                     |               |
|                                                                     |               |
|                                                                     | <del></del>   |
|                                                                     |               |
|                                                                     |               |
|                                                                     |               |
|                                                                     | <del></del>   |
|                                                                     | <del></del>   |
|                                                                     | <u></u>       |
|                                                                     |               |
|                                                                     | <del></del>   |
|                                                                     | <del></del>   |
|                                                                     | <del></del> - |
|                                                                     |               |
|                                                                     |               |
|                                                                     | <u></u>       |
|                                                                     | <del></del>   |
|                                                                     |               |
|                                                                     |               |

|                              |                                        | 87<br><b>Fr</b><br>Francium<br>223.020 | 55<br><b>Cs</b><br>Cesium<br>132.905   | 37<br><b>Rb</b><br>Rubidium<br>84.468   | Potassium<br>39.098                        | Na.<br>Sodium<br>22.990               | Lithium 6.941                        | Hydrogen | _                              |
|------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------------|--------------------------------------|----------|--------------------------------|
|                              |                                        | 88<br><b>Ra</b><br>Radium<br>226.025   | 56<br><b>Ba</b><br>Barium<br>137.327   | 38<br><b>Sr</b><br>Strontium<br>87.62   | 20<br><b>Ca</b><br>Calcium<br>40.078       | Mg<br>Magnesium<br>24305              | Be<br>Beryflium<br>9.012             | 2        |                                |
| ∞1/c                         | - 5                                    | 89-103<br>Actinides                    | 57-71<br>Lanthanides                   | 39<br>Y<br>Yttrium<br>88.906            | Sc<br>Scandium<br>44.956                   | ω                                     |                                      |          |                                |
|                              | La<br>La<br>Lanthanum                  | Rf<br>Rutherfordian<br>[261]           | 72<br><b>Hf</b><br>Hafnium<br>178,49   | 40<br><b>Zr</b><br>Zrconium<br>91224    | 22<br><b>Ti</b><br>Titanium<br>47.88       | 4                                     |                                      |          |                                |
|                              | 58<br>Ce<br>Cerium<br>140.115          |                                        | 73<br><b>Ta</b><br>Tantalum            | 41<br><b>N</b> b<br>Niobium<br>92.906   | 23<br><b>V</b><br>Vanadium<br>50.942       | <b>5</b> 1                            |                                      |          |                                |
| 3                            | Pr<br>Pr<br>Praseodymium<br>140.908    | × -                                    | 74<br>W<br>Tungsten<br>183.85          | Mo<br>Molibdenum<br>95.94               | 24<br><b>Cr</b><br>Chromium<br>51.996      | <u>o</u>                              |                                      |          | 7                              |
|                              | Neodymium                              | _                                      | 75<br><b>Re</b><br>Rhenium<br>186.207  | T <sub>C</sub> Technetium 98.907        | 25<br>Mn<br>Manganese<br>54.938            | 7                                     |                                      |          | Periodic Table of the Elements |
| 93<br><b>Np</b><br>Nepanium  | 61<br>Pm<br>Promethium                 | 108<br><b>Hs</b><br>Hassium<br>[269]   | 76<br><b>Os</b><br>19023               | Ru<br>Ruthenium<br>101.07               | 26<br>Fe Iron<br>55.933                    |                                       |                                      |          | dic T                          |
| 94<br>Pu<br>Putonium         | 62<br><b>Sm</b><br>Samarium<br>150.36  | 3 5                                    | 77                                     | 45<br><b>Rh</b><br>m Rhodium<br>102.906 | 27<br><b>Co</b><br>Cobalt<br>58.933        | 9                                     |                                      |          | able                           |
| 95<br>Am<br>Americium        | 63<br><b>Eu</b><br>Europium            | III0 Ds Im Darmetadtium [269]          | 78<br><b>Pt</b><br>Platinum<br>195.08  | 46<br>Pd<br>n Palladium<br>5 106.42     | 28<br><b>Ni</b><br>Nickel<br>58.693        | 10                                    |                                      |          | of t                           |
| Cm<br>Cm                     | 64<br><b>Gd</b><br>Gadolinium          | ₹ -                                    | 79<br><b>Au</b><br>n Gold<br>196.967   | 47<br><b>Ag</b><br>Silver<br>107.868    | 29<br><b>Cu</b><br>Copper<br>63.546        | <b>±</b>                              |                                      |          | he E                           |
| 97<br><b>Bk</b><br>Berkelium | 65<br><b>Tb</b><br>Terbium<br>158.925  |                                        | 80<br>Hg<br>Mercury<br>7 200.59        | 48 Cadmium                              | 30<br><b>Zn</b><br>Zinc<br>65.39           | 12                                    |                                      |          | leme                           |
| 98<br>Californium            | Dy<br>Dysprosium                       |                                        | 8                                      | 49<br>In<br>Indium                      | 31<br><b>Ga</b><br>Gallium<br>69.732       | Aluminum<br>26.982                    | 5<br><b>B</b><br>Boron<br>10.811     | 13       | ents                           |
|                              | 67<br><b>Ho</b><br>Holmium             | <b>"</b> =                             | 82                                     | 50<br><b>Sn</b><br>Tin                  | 32 <b>Ge</b> m Germanium 2 72.61           | 14<br>Si<br>um Silicon<br>2 28.086    | 6<br>C<br>Carbon<br>1 12011          | 14       |                                |
|                              | 68<br>Erbium<br>167.26                 | <u> </u>                               |                                        | 51<br><b>Sb</b><br>Antimony             | 33<br>As<br>ium Arsenic<br>74.922          | 15<br>P<br>n Phosphorus<br>6 30.974   | 7<br>Nitrogen                        | 15       |                                |
| Mendelevium                  | 69<br><b>Tm</b><br>Thulium             |                                        | -                                      | 52<br>Te<br>ony Tellurium<br>60 127.6   | 34<br><b>Se</b><br>iic Selenium<br>2 78.09 | 16<br>Sorus Sulfur<br>4 32.066        | 8<br>Oxygen<br>7 15.999              | 16       |                                |
|                              | 70<br><b>Yb</b><br>Ytterbium           |                                        | 85<br>At<br>um Astatine<br>82] 209.987 | 53<br>um lodine<br>6 126.904            | 35<br><b>Br</b><br>um Bromine<br>9 79.904  | 17 Chlorine 6 35.453                  | 9<br>F<br>en fluorine<br>18.998      | 17       |                                |
|                              | 71<br><b>Lu</b><br>Lutedium<br>174.967 | <u> </u>                               | 8                                      | 54<br><b>Xe</b><br>%enon<br>04 131.29   | 36 ine Krypton 94.80                       | 18<br>  Ar<br>  ine Argon<br>  39,948 | 10<br><b>Ne</b><br>Neon<br>98 20.180 | Helium   | 18                             |

| STUDENT EDUCATION NUMBER |  |  |  |  |  |  |  |  |  |
|--------------------------|--|--|--|--|--|--|--|--|--|
|                          |  |  |  |  |  |  |  |  |  |

# **SSLC CHEMISTRY**

#### 2024

# (For Scorers only)

| STRANDS  |                                     | Weighting | Scores | Check<br>Scorer | AED<br>check |
|----------|-------------------------------------|-----------|--------|-----------------|--------------|
| STRAND 1 | ATOMIC STRUCTURE AND BONDING        | 15        |        |                 |              |
| STRAND 2 | QUANTITATIVE CHEMISTRY              | 17        |        |                 |              |
| STRAND 3 | ORGANIC CHEMISTRY                   | 19        |        |                 |              |
| STRAND 4 | INORGANIC CHEMISTRY                 | 10        |        |                 |              |
| STRAND 5 | PRINCIPLES OF PHYSICAL<br>CHEMISTRY | 10        |        |                 |              |
| STRAND 6 | OXIDATION AND REDUCTION             | 20        |        |                 |              |
| STRAND 7 | ENVIRONMENTAL CHEMISTRY             | 9         |        |                 |              |
|          | TOTAL                               | 100       |        |                 |              |